

- $x_{0} ;+\infty[$:
 الشهال [A ; $\lim _{x \rightarrow+\infty} f(x)=+\infty$
: Jth
+

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} x^{2}=+\infty:
$$

: 5 ف

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty}\left(-\mathrm{U}_{\mathrm{n}}\right)=+\infty \text { : إذا وفقط } \lim _{x \rightarrow+\infty} \mathrm{U}_{\mathrm{n}}=-\infty \text { : }
\end{aligned}
$$

 ون

$$
\text { وستقيم مقارب أفقي (} y=\lambda=\lambda \text { : معادلتّه }
$$

: 7 : 7 تعريف
لتكنر f دالة همرفة f على

$$
\left\{\begin{array}{l}
f(x)=\mathbf{a} x+\mathbf{b}+\mathbf{g}(x) \\
\lim _{x \rightarrow+\infty} \mathbf{g}(x)=0
\end{array}\right.
$$

$$
\lim _{n \rightarrow+\infty} \mathbf{U}_{n}=+\infty \text { : نحو }+ \text { ونكتب }
$$

مثّلل

$$
\lim _{n \rightarrow+\infty} \mathrm{U}_{\mathrm{n}}=\lim _{n \rightarrow+\infty} \mathrm{n}^{2}=+\infty \quad \text { الحل }
$$

$$
\text { تعريف } 2 \text { : }
$$

نقول كن المنتالية

خاصية 1 :

$$
\text { تعريف } 3 \text { : }
$$

نقول عن متتالية (${ }^{\text {(}}$) أنها نتّناهى نحو عدد λ إذا كان كل مجال مفتّوح يشمل λ يحتوي على حدود المتتالية ابتداع من رنبة معينة . ونقول أن المتتالية منقاربةً و نكتب :

$$
\lim _{n \rightarrow+\infty} U_{n}=\lambda
$$

خاصبية 2 :
هكل منتّالية متز ايدة و محدودة من الأعلى بالعلد الحقيقي A تنّقارب نحو نهاية λ انصغر من أو
تساوي A A
. $f(x) \leq g(x):[A ;+\infty[$ [3 , $\lim _{x \rightarrow+\infty} g(x)=+\infty:$: $\lim _{x \rightarrow+\infty} f(x)=+\infty$: ت ت آن $\lim _{x \rightarrow+\infty} f(x)=-\infty:$: $\lim _{x \rightarrow+\infty} g(x)=-\infty:$: \quad تاك \mid | \mid) 8 - مصليات على نهايات المتتاليات و الدوال :

	$\begin{aligned} & \lim _{x \rightarrow x_{0}} f(x) \\ & \lim _{n \rightarrow+\infty} U_{n} \text { g } \end{aligned}$	$\begin{aligned} & \lim _{x \rightarrow x_{0}} g(x) \\ & \lim _{n \rightarrow+\infty} V_{n} g \end{aligned}$	$\begin{aligned} & \lim _{x \rightarrow x_{0}}(f+g)(x) \\ & \lim _{n \rightarrow+\infty}\left(U_{n}+V_{n}\right) g \end{aligned}$
1)	${ }_{n \rightarrow+\infty} \ell$	ℓ^{\prime}	$\ell+\ell^{\prime}$
2)	ℓ	$+\infty$	$+\infty$
3)	ℓ	-	$-\infty$
4)	$+\infty$	$+\infty$	$+\infty$
5)	$-\infty$	$-\infty$	-
6)	$+\infty$	$-\infty$	حالة عدم اللتعيين

. 7 (7 (7 (7 اية الجداء)

	$\lim _{x \rightarrow x_{0}} f(x)$	$\lim _{x \rightarrow x_{0}} g(x)$	$\lim _{x \rightarrow x_{0}}(f+g)(x)$
	$\lim _{n \rightarrow+\infty} \mathbf{U}_{\mathrm{n}}$	$\lim _{n \rightarrow+\infty} \mathbf{V}_{\mathrm{n}}$	$\lim _{n \rightarrow+\infty} U_{n}+V_{n}$
1$)$	ℓ	ℓ^{\prime}	$\ell+\ell^{\prime}$
2$)$	$\ell(\ell>0)$	$+\infty$	$+\infty$
3$)$	$\ell(\ell<0)$	$+\infty$	$-\infty$
4$)$	$+\infty$	$+\infty$	$+\infty$
5$)$	$+\infty$	$-\infty$	$-\infty$
6$)$	$-\infty$	$-\infty$	$+\infty$

y = $\mathrm{ax}+\mathrm{b}$: يقول ان

لتكن f دالة مصرفة بجوار $f 0$ (وليس بالضرورة عند x_{0}) بنقول أن f نتّاهى نحو عندما يتخاهى x نحو

$$
\text { معادلتهd } x=x_{0}
$$

$$
\text { تُعريف } 9 \text { : }
$$

. x_{0}. 1 د f
نقول أن f تتتاهى نجو λ عندما يتناهى x λ نحو
. $\lim _{x \rightarrow x_{0}} f(x)=\lambda \quad$ يحتوي على كل ڤيم الدالة من أجل قيم x اللقريبة من
4- النهايانـات و الحصر : خاصية 3 :

لتكن $\mathrm{U}_{\mathrm{n}} \leq \mathrm{V}_{\mathrm{n}} \leq \mathrm{W}_{\mathrm{n}}$

$$
\text { . } \lim _{x \rightarrow+\infty} \mathrm{V}_{\mathrm{n}}=\lambda: ي: ي
$$

خاصية 4 :

$$
f(x) \leq g(x) \leq h(x)
$$

تقبّل نهاية

$$
\begin{aligned}
& 3 \text { - نهايةٌ دالةَ عند عدد حقيقيّ } \\
& \text { تعريف 8: }
\end{aligned}
$$

$$
\text { نقول ان } \text {) }
$$

$f(x) \leq g(x):[A ;+\infty[$. f,
$\lim _{x \rightarrow+\infty} g(x)=+\infty:$: $\lim _{x \rightarrow+\infty} f(x)=+\infty$: تulsidie $\lim _{x \rightarrow+\infty} f(x)=-\infty$: فان $\lim _{x \rightarrow+\infty} g(x)=-\infty$: ज्या 1 |)
 (تهاية المجموع) : 6 (6 dyalh

	$\begin{aligned} & \lim _{x \rightarrow x_{0}} f(x) \\ & \lim _{n \rightarrow+\infty} \mathbf{U}_{n} \text { و } \end{aligned}$	$\begin{aligned} & \lim _{x \rightarrow x_{0}} g(x) \\ & \lim _{n \rightarrow+\infty} \mathbf{V}_{\mathrm{n}} g \end{aligned}$	$\begin{aligned} & \lim _{x \rightarrow x_{0}}(f+g)(x) \\ & \lim _{n \rightarrow+\infty}\left(U_{n}+V_{n}\right) g \end{aligned}$
1)	ℓ	ℓ^{\prime}	$\ell+\ell^{\prime}$
2)	ℓ	$+\infty$	$+\infty$
3)	ℓ	$-\infty$	-
4)	$+\infty$	$+\infty$	$+\infty$
5)	$-\infty$	$-\infty$	-
6)	$+\infty$	$-\infty$	حالةّ عدم التّعيين

(نهاية الجداء) .

	$\begin{aligned} & \lim _{x \rightarrow x_{0}} f(x) \\ & \lim _{n \rightarrow+\infty} \mathbf{U}_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & \lim _{x \rightarrow x_{0}} g(x) \\ & \lim _{n \rightarrow+\infty} V_{n} \end{aligned}$	$\begin{aligned} & \lim _{x \rightarrow x_{0}}(f+g)(x) \\ & \lim _{n \rightarrow+\infty} U_{n}+V_{n} \end{aligned}$
1)	ℓ	ℓ^{\prime}	$\ell+\ell^{\prime}$
2)	$\ell(\ell>0)$	$+\infty$	$+\infty$
3)	$\ell(\ell<0)$	$+\infty$	$-\infty$
4)	$+\infty$	$+\infty$	$+\infty$
5)	$+\infty$	$-\infty$	$-\infty$
6)	$-\infty$	$-\infty$	$+\infty$
7)	0	$+\infty$ g 1 -	حالةّ علم التّهيين

3- نهايةَ دالة عند عدد حققيقي، تعريف 8 :
 يتتاهى x x نحو x x إذا وفقط إذا كان كل مجال [A ;
 . $x=x_{0}$: تعريف 9:
. x_{0} دالة مـرفةّ على مجال مفتوح و يشمل f
 ($\lim _{x \rightarrow x_{0}} f(x)=\lambda:$ يحتوي على كل قيم الدالة هن أجل قيم x القريبة من x_{0} ونكتب

$$
4 \text { - النجهايات و الحصر : }
$$

خاصية 3 :
لتكن

$$
\mathrm{U}_{\mathrm{n}} \leq \mathrm{V}_{\mathrm{n}} \leq \mathrm{W}_{\mathrm{n}}
$$

إذا كانت $)$

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \mathbf{V}_{\mathrm{n}} & =\lambda: \text { أي }^{\text {خاصية }}
\end{aligned}
$$

$$
f(x) \leq g(x) \leq h(x)
$$

. ($\lim _{|x| \rightarrow+\infty} g(x)=\lambda$ وأقبّل نهاية ${ }^{\text {(im }} \lim _{x \rightarrow x_{0}} g(x)=\lambda \quad: \quad$ ونكتب
-: 1 is all
 n من أجل كل عدد طبيعي $\mathbf{U}_{\mathrm{n}}<\mathrm{V}_{\mathrm{n}}$: $\lim _{n \rightarrow+\infty} \mathrm{U}_{\mathrm{n}}=-\infty$: فأن $\lim _{n \rightarrow+\infty} \mathrm{V}_{\mathrm{n}}=+\infty$: $g(x) \leq f(x) \leq h(x):$: : فأن $\lim _{x \rightarrow 2} g(x)=4$, $\lim _{x \rightarrow 2} h(x)=3:$:

$$
\lim _{x \rightarrow 2} f(x)=\frac{3+4}{2}=3,5
$$

$$
\lim _{x \rightarrow a}\left(\frac{1}{f}\right)(x)=0 \text { : فان } \quad \lim _{x \rightarrow a} f(x)=+\infty \text { (3) }
$$

4) كل متّتالية متز ايدة تماما و محدودة من الأعلى بالعدلد 4 فهي هتقاربة نحو 4 . 4 .
فإنه ابتداء من رتبة هعينة $\lim _{n \rightarrow+\infty} V_{n}=+\infty:$: اذا كانت ت تكون كل حدود

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty \text { : توجد دالتـان } f \text { بحبث } f(x)
$$ $\lim _{x \rightarrow+\infty}(f \times g)(x)=-1$ بينهـا $\quad \lim _{x \rightarrow+\infty} g(x)=4$,

النمرين 2 :

$$
\text { ن نـتبر الدالة } f(x)=x+\frac{\sin x}{x} \quad \text { حيث }
$$

- $f(x) \geq x-\frac{1}{x}$: بين أنها من أجل كل عدد حقيقي موجب x فأن - $\lim _{x \rightarrow+\infty} f(x)$: (2

ن نتبّر الدالة $g(x)=x^{2}+x \sin x: 1$ حيث
$x(x-1) \leq g(x) \leq x(x+1):$:

	$\lim _{x \rightarrow x_{0}} f(x)$	$\lim _{x \rightarrow x_{0}}\left(\frac{1}{f}\right)(x)$
$\lim _{n \rightarrow+\infty} \mathbf{U}_{\mathrm{n}}$	$\lim _{n \rightarrow+\infty}\left(\frac{1}{\mathbf{U}_{\mathrm{n}}}\right)$	
1$)$	$\ell(\ell \neq 0)$	$\frac{1}{\ell}$
2)	$+\infty$	0
3)	$-\infty$	0
4$)$	$0\left(f(x)>0 \quad 9 \mathrm{U}_{\mathrm{n}}>0\right)$	$+\infty$
5)	$0\left(f(x)<0 \quad 9 \mathrm{U}_{\mathrm{n}}<0\right)$	$-\infty$
6)	0	0

$$
\text { خاصية } 9 \text { : }
$$

$\lim _{x \rightarrow a}(g \circ f)(x)=\mathrm{C}:$: $\lim _{x \rightarrow b} g(x)=\mathrm{c}, \lim _{x \rightarrow a} f(x)=\mathrm{b}:$: إن كانت

خاصية 10 :

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty}\left[f\left(\mathbf{U}_{\mathrm{n}}\right)\right]=\mathrm{b}: \text { : فإن }
\end{aligned}
$$

 : التّهرين 10

$$
f(x)=\frac{2 x^{3}-x^{2}-3 x+2}{x^{2}-1}: \text { نيّتبر الدالة } f(
$$

D بحيث من أجل كل عدد حقيقي x من a , b , c , d

$$
\begin{aligned}
& \text {. } f(x)=a x+b+\frac{c x+d}{x^{2}-1} \text { : } \\
& \text {. } D_{f}
\end{aligned}
$$

3- بين أن التمثيل البياني (C $)$ يقبل هستقيمين مقاربين يطبب تعيينهـا. 3

5- تأكد بيانيا من صحة النتانتج باستعمال آلة بيانية .
$f(x)=\frac{x-\sin ^{2} x}{2+\sin x} \quad$ نحتبر الدالة f ذات المتثير الحقيقي x الممرفةة كما يلي x-1-برهن أنه يوجد عددان حقيقيان a وb

$$
\text { a } a \leq 2+\sin x \leq b \text { : }
$$

2- بر هن على وجود دالتين . $x<0$. $g(x) \leq f(x) \leq h(x)$

$$
\text { lim } \lim _{x \rightarrow-\infty} f(x) \quad \text { عين النـهايات التلالية : } \quad \lim _{x \rightarrow+\infty} f(x) \text { : }
$$ التمرين 12 :

ـ احسب النهايات التالية :

$$
\lim _{x \rightarrow-3} \frac{x^{3}+27}{x+3} \quad \lim _{x \rightarrow 1} \frac{x^{4}-4 x+3}{x^{5}-1}
$$

$\lim _{x \rightarrow+\infty} g(x)$ (2
 . $\lim _{x \rightarrow-\infty} g(x)$ (4) استنتتج النتّمرين $4 \rightarrow-\infty$

$$
\begin{aligned}
& \text {. } f(x)=x^{2}+3 x \sqrt{2}+\frac{1}{x-\sin x}: \text { حيبر الدالة } \\
& \text { احسب نهاية الالالة } f \text { عند }
\end{aligned}
$$

الثتمرين 5 :

$$
f(x)=\frac{4 \sqrt{x+7}-3 \sqrt{x+14}}{x-2}: \text { نعتبر الدالة }
$$

1 3- عين بو اسنطة معاد لانها المستقيمات المقاربة.

التصرين 6 :

$$
f(x)=\frac{\sqrt{|x|}+\cos x}{x-\sin x} \quad: \quad \text { بالعبارة } \mathbb{R} \text { تقتبر الدالة } f \text { المعرفة على }
$$

نحتبر الدالة العددية ذات المتغير الحقيقي x المعرفةّ بالعبارة :
. m حيث m وسيط حقيقي $f(x)=\sqrt{4 x^{2}+x+1}+m x+1$

- عين مجمو عة تعريف الدالة
- الحسب نهايات الدالة
- استنتتج وجود مستقيمات مقاربة عمودية .

التمرين 8 :

> احسب النهايات التالية :

1) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{4 x}$
2) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x^{2}}$
3) $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}$
4) $\lim _{\substack{>\\ x \rightarrow 0}} \frac{\sin x}{\sqrt{x}}$

$$
f(x)=x+\sqrt{x^{2}+x+1} \text { :نحتبر الدالة } f \text { المـرفةّ بالعبارة }
$$

$\lim _{x \rightarrow 1} \frac{x^{n}-1}{x^{n}-1}: n \in \mathbb{N}^{*}, p \in \mathbb{N}^{*}$

$$
f(x)=\frac{x^{3}+3 x}{x^{2}-1} ; g(x)=\frac{\mathrm{a}}{x+1} ; h(x)=\frac{b}{x-1}
$$

عين العددان الحقيقيان الثُبتان a وb بحيث :

$$
\lim _{x \rightarrow-1}\left(\frac{f}{g}\right)(x)=1 \quad, \quad \lim _{x \rightarrow 1}\left(\frac{f}{h}\right)(x)=1
$$

التصرين 14 :
احسب النهايات التّالية :

$$
\begin{array}{r}
\lim _{x \rightarrow+\infty}\left[\sqrt{x^{2}+x+1}-(x+1)\right] \\
\lim _{x \rightarrow-\infty}\left[\sqrt{x^{2}+x+1}-(x+1)\right] \\
\lim _{x \rightarrow-\infty}\left[\sqrt{x^{2}+x}-\sqrt{x^{2}+1}\right] \\
\lim _{x \rightarrow+\infty}\left[\sqrt{x^{4}+x^{2}+2}-\left(x^{2}+x+1\right)\right] \\
\lim _{x \rightarrow-\infty}\left[\sqrt{x^{4}+x^{2}+2}-\left(x^{2}+x+1\right)\right]
\end{array}
$$

التمرين 15 :
احسب النهايات التالية :
$\lim _{x \rightarrow+\infty} \frac{x-\sqrt{x^{2}+x+1}}{2 x+\sqrt{4 x^{2}+x}}\left(2 \quad \lim _{x \rightarrow-\infty} \frac{x-\sqrt{x^{2}+x+1}}{2 x+\sqrt{4 x^{2}+x}}\right.$
$\lim _{x \rightarrow-\infty} \frac{x-\sqrt{x^{2}+3}}{\sqrt{x^{2}+x-3}}$
$\lim _{x \rightarrow-\infty} \frac{x-\sqrt{x^{2}+3}}{x-\sqrt{x^{2}+x-3}}$

 التّمرين 2

$$
f(x) \geq x-\frac{1}{x} \text { (1) إثبات أن }
$$

لدينا من أجل كل عدلد حقيقي $\sin x \geq-1$ وبما أن x موجب تماما فان :
$x-1 \leq x-\sin x \leq x+1:$: $-1 \leq-\sin x \leq 1$ $\frac{1}{x+1} \leq \frac{1}{x-\sin x} \leq \frac{1}{x-1}$

$$
x^{2}+3 x \sqrt{2}+\frac{1}{x+1} \leq x^{2}+3 x \sqrt{2}+\frac{1}{x-\sin x} \leq x^{2}+3 x \sqrt{2}+\frac{1}{x-1}
$$

$$
x^{2}+3 x \sqrt{2}+\frac{1}{x+1} \leq f(x) \leq x^{2}+3 x \sqrt{2}+\frac{1}{x-1}
$$

$$
\lim _{x \rightarrow+\infty} x^{2}+3 x \sqrt{2}+\frac{1}{x+1}=+\infty
$$

$$
\lim _{x \rightarrow+\infty} x^{2}+3 x \sqrt{2}+\frac{1}{x-1}=+\infty
$$

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{2}+3 x \sqrt{2}+\frac{1}{x+1}=+\infty
$$

:
$\lim _{x \rightarrow-\infty} x^{2}+3 x \sqrt{2}+\frac{1}{x-1}=+\infty$

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty
$$

$D_{f}=\{x \in \mathbb{R}$
$D_{f}=\{x \in \mathbb{R}: x \neq 2 ; x \neq x+7 \geq 0 ; x+14 \geq 0\}$

$$
D_{f}=[-7 ; 2[\cup] 2 ;+\infty[
$$

$$
\lim _{x \rightarrow-7} f(x)=\lim _{x \rightarrow-7} \frac{4 \sqrt{x+7}-3 \sqrt{x+14}}{x-2}=\frac{\sqrt{7}}{3}
$$

$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{4 \sqrt{x+7}-3 \sqrt{x+14}}{x-2}$

هن اجل

من أجل 0 :

$$
f(x)=\frac{\sqrt{-x}+\cos x}{x-\sin x}
$$

$x-\sin x \geq 0$: أي أن

$$
\begin{aligned}
\lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} f(x)= & \lim _{\substack{x \\
x \rightarrow 0}} \frac{\sqrt{x}+\cos x}{x-\sin x}=+\infty \\
& \left\{\begin{array}{l}
\sqrt{x}+\cos x \longrightarrow 1 \\
x-\sin x \longrightarrow 0
\end{array}\right.
\end{aligned}
$$

$x-\sin x \leq 0$: وعن أجل $x \leq \sin x: x \leq 0$ $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sqrt{-x}+\cos x}{x-\sin x}=-\infty$

$$
\left\{\begin{array}{l}
\sqrt{-x}+\cos x \longrightarrow 1 \\
x-\sin x \longrightarrow 0
\end{array}\right.
$$

\qquad

$$
\begin{aligned}
D_{f}= & \left\{x \in \mathbb{R}: 4 x^{2}+x+1 \geq 0\right\} \\
& 4 x^{2}+x+1 \geq 0: \text { : لدل المتراجحة }
\end{aligned}
$$

: $\Delta=(1)^{2}-4$ (4) (1)

$$
\begin{aligned}
\lim _{n \rightarrow-\infty} f(x) & =\lim _{n \rightarrow-\infty} \sqrt{4 x^{2}+x+1}+m x+1 \\
& =\lim _{x \rightarrow-\infty} \sqrt{x^{2}\left(4+\frac{1}{x}+\frac{1}{x^{2}}\right)}+m x+1
\end{aligned}
$$

$$
\begin{array}{r}
=\lim _{x \rightarrow 2} \frac{[4 \sqrt{x+7}-3 \sqrt{x+14}][4 \sqrt{x+7}+3 \sqrt{x+14}]}{(x-2)[4 \sqrt{x+7}+3 \sqrt{x+14}]} \\
=\lim _{x \rightarrow 2} \frac{(4 \sqrt{x+7})^{2}-(3 \sqrt{x+14})^{2}}{(x-2)[4 \sqrt{x+7}+3 \sqrt{x+14}]} \\
=\lim _{x \rightarrow 2} \frac{16(x+7)-9(x+14)}{(x-2)[4 \sqrt{x+7}+3 \sqrt{x+14}]} \\
=\lim _{x \rightarrow 2} \frac{7(x-2)}{(x-2)[4 \sqrt{x+7}+3 \sqrt{x+14}]} \\
=\lim _{x \rightarrow 2} \frac{7}{4 \sqrt{x+7}+3 \sqrt{x+14}}=\frac{7}{24}
\end{array}
$$

$$
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{7}{4 \sqrt{x+7}+3 \sqrt{x+14}}=\frac{7}{24}
$$

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{7}{4 \sqrt{x+7}+3 \sqrt{x+14}}=0
$$

$$
\lim _{x \rightarrow+\infty} 4 \sqrt{x+7}+3 \sqrt{x+14}=+\infty
$$

3- تعيين المستقّيمات المقاربة بو اسطة معادلاتها :
 . $\mathrm{y}=0$: 0 :
: \mathbb{R}^{*} ت تبيان أن

$$
D_{f}=\{x \in \mathbb{R}: x-\sin x \neq 0\}
$$

$$
\text { وعليه: } \sin x=x \text { : مغناه } \quad x-\sin x=0
$$

وحل هذه المعادلة هو $\left.\boldsymbol{D}_{f}=\right]-\infty ; 0[\cup] 0 ;+\infty\left[: \quad\right.$! $\quad \boldsymbol{D}_{f}=\mathbb{R}^{*}: 0$
$=\lim _{x \rightarrow-\infty} \frac{-3 x}{x\left[\sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}}-2-\frac{1}{x}\right]}=\lim _{x \rightarrow \infty} \frac{-3}{-\sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}}-2-\frac{1}{x}}=$

- $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \sqrt{4 x^{2}+x+1}+m x+1$

$$
\begin{aligned}
& =\lim _{x \rightarrow+\infty} \sqrt{x^{2}\left(4+\frac{1}{x}+\frac{1}{x^{2}}\right)}+m x+1 \\
& =\lim _{x \rightarrow+\infty} x \sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}}+\mathrm{m} x+1 \\
& =\lim _{x \rightarrow+\infty} x\left[\sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}}+m+\frac{1}{x}\right] \\
& \left\{\begin{array}{l}
x \longrightarrow+\infty \\
\sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}}+m+\frac{1}{x} \longrightarrow 2+m
\end{array}\right.
\end{aligned}
$$

 , |لالة حالة عدم التُعيين $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \sqrt{4 x^{2}+x+1}-(2 x-1): m=-2$ w

$$
=\lim _{x \rightarrow+\infty} \frac{\left[\sqrt{4 x^{2}+x+1}-(2 x-1)\right]\left[\sqrt{4 x^{2}+x+1}+(2 x-1)\right]}{\sqrt{4 x^{2}+x+1}+(2 x-1)}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{2}+x+1}-(2 x-1)^{2}}{\sqrt{4 x^{2}+x+1}+(2 x-1)}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{4 x^{2}+x+1-\left(4 x^{2}-4 x+1\right)}{\sqrt{4 x^{2}+x+1}+(2 x-1)}
$$

$=\lim _{x \rightarrow-\infty}-x \sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}+m x+1}$
$=\lim _{x \rightarrow-\infty} x\left[-\sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}}+m+\frac{1}{x}\right]$

$$
\left\{\begin{array}{l}
-\sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}}+m+\frac{1}{x} \longrightarrow m-2 \\
x \longrightarrow-\infty
\end{array}\right.
$$

نلاحظ انن :

وعليه :
بابـا كان $m>2$ أي $m-2>0$ أي

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty \quad: \quad \text { فبان }
$$

m<2 إنا كان

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty \text { : فان }
$$

حالة عدم الثتيين ! m=2 إزالة عدم التُتيين لما

- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \sqrt{4 x^{2}+x+1}+2 x+1$

$$
=\lim _{x \rightarrow-\infty} \frac{\left[\sqrt{4 x^{2}+x+1}+(2 x+1)\right]\left[\sqrt{4 x^{2}+x+1}-(2 x+1)\right]}{\sqrt{4 x^{2}+x+1}-(2 x+1)}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{4 x^{2}+x+1-(2 x+1)^{2}}{\sqrt{4 x^{2}+x+1}-(2 x+1)}=\lim _{x \rightarrow-\infty} \frac{4 x^{2}+x+1-4 x^{2}-4 x-1}{\sqrt{4 x^{2}+x+1}-(2 x+1)}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{-3 x}{\sqrt{x^{2}\left(4+\frac{1}{x}+\frac{1}{x^{2}}\right)-2 x-1}}=\lim _{x \rightarrow-\infty} \frac{-3 x}{-x \sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}-2 x-1}}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x^{2}} \times x=0
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0}^{x \rightarrow 0} \frac{\sin x}{\sqrt{x}} & =\lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} \frac{\sin x}{x} \times \frac{x}{\sqrt{x}} \\
& =\lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} \frac{\sin x}{x} \times \sqrt{x}=0
\end{aligned}
$$

إثبات أن (C) يقبل يقبل مستُقيمين مقاربين :

$$
\begin{gathered}
\lim _{|x| \rightarrow+\infty}\left[f(x)-\left(2 x+\frac{1}{2}\right)\right]=\lim _{|x| \rightarrow+\infty} x+\sqrt{x^{2}+x+1}-2 x-\frac{1}{2} \\
=\lim _{|x| \rightarrow+\infty}-x-\frac{1}{2}+\sqrt{x^{2}+x+1}
\end{gathered}
$$

$$
\lim _{x \rightarrow-\infty} f(x)-\left(2 x+\frac{1}{2}\right)=+\infty
$$

$$
\text { (} \lim _{x \rightarrow+\infty} f(x)-\left(2 x+\frac{1}{2}\right) \text { حالة عدم التتيين }
$$

$$
\lim _{x \rightarrow+\infty} f(x)-\left(2 x+\frac{1}{2}\right)=\lim _{x \rightarrow+\infty} \sqrt{x^{2}+x+1}-\left(x+\frac{1}{2}\right)^{:}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{\left[\sqrt{x^{2}+x+1}-\left(x+\frac{1}{2}\right)\right]\left[\sqrt{x^{2}+x+1}+\left(x+\frac{1}{2}\right)\right]}{\sqrt{x^{2}+x+1}+\left(x+\frac{1}{2}\right)}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{\left(x^{2}+x+1\right)-\left(x+\frac{1}{2}\right)^{2}}{\sqrt{x^{2}+x+1}+x+\frac{1}{2}}
$$

$=\lim _{x \rightarrow+\infty} \frac{-3 x}{\sqrt{4 x^{2}+x+1}+2 x-1}=\lim _{x \rightarrow+\infty} \frac{-3 x}{\sqrt{x^{2}\left(4+\frac{1}{x}+\frac{1}{x^{2}}\right)}+2 x-1}$

$$
=\lim _{x \rightarrow+\infty} \frac{-3 x}{x \sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}}+2 x-1}=\lim _{x \rightarrow+\infty} \frac{-3 x}{x\left[\sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}}+2-\frac{1}{x}\right]}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{1}{x^{2}}}+2-\frac{1}{x}}=-\frac{3}{4}
$$

ـ إستنتاج وجود مستقيمات مقاربة : ؛

$$
\text { من أجل m=2 . يوجد مستقيم مقارب معادلته } y=\frac{3}{4} \text { عـد }
$$

$$
\text { من أجل m=-2 : يوجد مستقيم مقارب معدلتهه } y=-\frac{3}{4} \text { عند }
$$

$$
\lim _{x \rightarrow 0} \frac{\sin 5 x}{4 x}=\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x} \times \frac{5 x}{4 x}
$$

$$
\lim _{x \rightarrow 0} \frac{\sin 5 x}{4 x}=\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x} \times \frac{5}{4}=1 \times \frac{5}{4}=\frac{5}{4} \quad: \quad \text {, }
$$

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \times \frac{2 x}{x^{2}}
$$

$$
=\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \times \frac{2}{x}
$$

ومنه ندرس حالتّين :

$$
\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} \frac{\sin 2 x}{x^{2}}=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} \frac{\sin 2 x}{2 x} \times \frac{2}{x}=+\infty
$$

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \times \frac{2}{x}=-\infty
$$

$$
\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x^{2}} \times \frac{x^{2}}{x}
$$

$=\lim _{x \rightarrow-\infty} \frac{\frac{3}{4}}{\sqrt{x^{2}+x+1}-x-\frac{1}{2}}=0$
, $\mathrm{m}=-\frac{1}{2}$: معادلة مستقيم مقارب غنـ
: a,b,c,d التعيين الأعداد $D_{f}=\left\{x \in \mathbb{R}: x^{2}-1 \neq 0\right\}$. $D_{f}=\mathbb{R}-\{-1 ; 1\}:$: $f(x)=\frac{(a x+b)\left(x^{2}-1\right)+c x+d}{x^{2}-1}: x_{1}$

$$
f(x)=\frac{a x^{3}-a x+b x^{2}-b+c x+d}{x^{2}-1}
$$

$$
f(x)=a x^{3}+b x^{2}+(-a+c) x-b+d
$$

$$
f(x)=\frac{a x^{3}+b x^{2}+(-a+c) x-b+d}{x^{2}-1}
$$

. $\left.D_{f}=\right]-\infty ;-1[\cup]-1 ; 1[\cup] 1 ;+\infty[:$: لدينا
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{2 x^{3}-x^{2}-3 x+2}{x^{2}-1}=\lim _{x \rightarrow-\infty} \frac{2 x^{3}}{x^{2}}=\lim _{x \rightarrow-\infty} 2 x=-\infty$ $=\lim _{x \rightarrow-\infty} \frac{2 x^{3}}{x^{2}}=\lim _{x \rightarrow-\infty} 2 x=-\infty$

$$
\begin{aligned}
& \mathbf{a}=2 ; b=-1 ; c=-1 ; d=1 ; ~: d \\
& f(x)=2 x-1+\frac{-x+1}{x^{2}-1} \quad: \\
& \text { : } D_{f} \text { 2 }
\end{aligned}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{x^{2}+x+1-\left(x+x+\frac{1}{4}\right)^{2}}{\sqrt{x^{2}+x+1}+x+\frac{1}{2}}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{\frac{3}{4}}{\sqrt{x^{2}+x+1}+x+\frac{1}{2}}=0
$$

$$
\text { وعليه : } y=2 x+\frac{1}{2} \text { معاددلة مستقيم مقارب عند + } y=\text {. }
$$

$\lim _{|x| \rightarrow+\infty}\left[f(x)-\left(-\frac{1}{2}\right)\right]=\lim _{|x| \rightarrow+\infty}\left[x+\sqrt{x^{2}+x+1}+\frac{1}{2}(\mathrm{~b}\right.$
$\lim _{x \rightarrow+\infty}\left[f(x)-\left(-\frac{1}{2}\right)\right]=+\infty$
وعظيه :
$\lim _{x \rightarrow-\infty}\left[f(x)-\left(-\frac{1}{2}\right)\right]=\lim _{x \rightarrow-\infty} \sqrt{x^{2}+x+1}+\left(x+\frac{1}{2}\right)$
Li

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{\left[\sqrt{x^{2}+x+1}+\left(x+\frac{1}{2}\right)\right]\left[\sqrt{x^{2}+x+1}-\left(x+\frac{1}{2}\right)\right]}{\sqrt{x^{2}+x+1}-\left(x+\frac{1}{2}\right)} \\
& \quad=\lim _{x \rightarrow-\infty} \frac{x^{2}+x+1-\left(x+\frac{1}{2}\right)^{2}}{\sqrt{x^{2}+x+1}-\left(x+\frac{1}{2}\right)} \\
& \quad=\lim _{x \rightarrow-\infty} \frac{x^{2}+x+1-\left(x^{2}+x+\frac{1}{4}\right)}{\sqrt{x^{2}+x+1}-\left(x+\frac{1}{2}\right)}
\end{aligned}
$$ وعليه البيان يقع فوق المستقّيم المقارب المانل

TEXAS INSTRUMENTS IL-83PILS

(1) البر هان على وجود a وb a $-1 \leq \sin x \leq 1$:لدينا

$$
b=3 \cdot g \quad a=1: 1 \leq 2+\sin x \leq 3
$$

البر هان على وجود دالتّين :

$$
\text { وبالتالي : } x-1 \leq x-\sin ^{2} x \leq x \quad \ldots \text { (1) (1) }
$$

$$
1 \leq 2+\sin x \leq 3 \text { : } 1 \leq \text { : } 1
$$

$$
\frac{1}{3} \leq \frac{1}{2+\sin x} \leq 1 \quad \ldots(2) \quad \text { و وليـ سبق ديـ }
$$

$$
\begin{aligned}
& \text {. } \frac{x-1}{3} \leq f(x) \leq x \quad: x \geq 1 \text { wid }
\end{aligned}
$$

$f(x)-y<0$: $x>-1$: $x+1>0$ ئلم
و عليه البيان يقع تحت المستقيم المقارب الماليل
$f(x)-\mathrm{y}>0$: 0 : $x<-1 \quad x+1<0$ ألم
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{2 x^{3}-x^{2}-3 x+2}{x^{2}-1}=\lim _{x \rightarrow+\infty} \frac{2 x^{3}}{x^{2}}=\lim _{x \rightarrow+\infty} 2 x=+\infty$: $x^{2}-1$ إشارة

x	$+\infty$	-1	1	$+\infty$	
$x^{2}-1$	+	0	-	0	+

- $\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{2 x^{3}-x^{2}-3 x+2}{x^{2}-1}=+\infty$

$$
\left\{\begin{array}{l}
2 x^{3}-x^{2}-3 x+2 \longrightarrow 2 \\
x^{2}-1 \longrightarrow 0
\end{array}:\right. \text { لن }
$$

- $\lim _{x \rightarrow-1}^{x \rightarrow} f(x)=\lim _{\substack{x \rightarrow-1}} \frac{2 x^{3}-x^{2}-3 x+2}{x^{2}-1}=-\infty$

$$
\left\{\begin{array}{l}
2 x^{3}-x^{2}-3 x+2 \longrightarrow 2 \\
x^{2}-1 \longrightarrow 0
\end{array}\right.
$$

- $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{2 x^{3}-x^{2}-3 x+2}{x^{2}-1}=0$

حالة عدم التّيين .ومنه نزيل عدم التّيين
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{(x-1)\left(2 x^{2}+x-2\right)}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{2 x^{2}+x-2}{x+1}=\frac{1}{2}$

فان $x=-1$ معاديلة مستقيم مقارب .

- وبما أن : $f(x)=2 x-1+\frac{-x+1}{x^{2}-1}$ ولدينا :
$\lim _{|x| \rightarrow+\infty} \frac{-x+1}{x^{2}-1}=\lim _{|x| \rightarrow+\infty} \frac{-(x-1)}{(x-1)(x+1)}=\lim _{|x| \rightarrow+\infty} \frac{-1}{x+1}=0$

$$
\begin{aligned}
& \text { 4- در اسة الوضصية النسبية للمنحنى و المستقتِه المقارب الماتلّ : } \\
& \text { لدينا : } f(x)-(2 x-1)=\frac{-1}{x+1}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}+x-3}{x^{4}+x^{3}+x^{2}+x+1}=0
$$

- $\lim _{x \rightarrow-1} \frac{x^{5}+1}{x^{3}+1}=\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{4}-x^{3}+x^{2}-x+1\right)}{(x+1)\left(x^{2}-x+1\right)}$

$$
=\lim _{x \rightarrow-1} \frac{x^{4}-x^{3}+x^{2}-x+1}{x^{2}-x+1}=\frac{5}{3}
$$

- $\lim _{x \rightarrow 1} \frac{x^{n}-1}{x^{\mathrm{p}}-1}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{\mathrm{n}-1}+x^{\mathrm{n}-2}+\ldots+x+1\right)}{(x-1)\left(x^{\mathrm{p}-1}+x^{\mathrm{p}-2}+\ldots+x+1\right)}$

$$
=\frac{1+1+\ldots+1}{1+1+\ldots+1}=\frac{n}{p}
$$

$$
\begin{aligned}
\lim _{x \rightarrow-1}\left(\frac{f}{g}\right)(x) & =\lim _{x \rightarrow-1} \frac{\frac{x^{3}+3 x}{x^{2}-1}}{\frac{a}{x+1}} \\
& =\lim _{x \rightarrow-1} \frac{x^{3}+3 x}{x^{2}-1} \times \frac{x+1}{a}
\end{aligned}
$$

$$
\lim _{x \rightarrow-1}\left(\frac{f}{g}\right)(x)=\lim _{x \rightarrow 1} \frac{x^{3}+3 x}{(x-1)(x+1)} \times \frac{x+1}{a}
$$

$$
=\lim _{x \rightarrow 1} \frac{x^{3}+3 x}{\mathrm{a}(x-1)}=\frac{-4}{-2 \mathrm{a}}=\frac{2}{a}
$$

$$
\text { a=2: } \frac{2}{a}=1: \text { : }
$$

$$
\begin{aligned}
\lim _{x \rightarrow 1}\left(\frac{f}{h}\right)(x)= & \lim _{x \rightarrow 1} \frac{\frac{x^{3}+3 x}{x^{2}-1}}{\frac{\mathrm{~b}}{x-1}}=\lim _{x \rightarrow 1} \frac{x^{3}+3 x}{(x-1)(x+1)} \times \frac{x-1}{\mathrm{~b}} \\
& =\lim _{x \rightarrow 1} \frac{x^{3}+3 x}{\mathrm{~b}(x+1)}=\frac{4}{2 \mathrm{~b}}=\frac{2}{\mathrm{~b}}
\end{aligned}
$$

$$
g(x)=\frac{x-1}{3}, h(x)=x: \text { : }
$$

$$
-(x-1) \geq-\left(x-\sin x^{2}\right) \geq-x \quad: \quad: \quad \text { من أجل }
$$

$$
\text { ومنه : وم } x-1 \leq f(x) \leq \frac{x}{3} \quad \frac{x}{3} \geq f(x) \geq x-1
$$

$$
\begin{aligned}
g(x)=x-1 & \text { و } \left.\quad \begin{array}{rl}
\text { 3 } & h(x)=\frac{x}{3}: \\
& : \text { حساب النهايات }
\end{array}\right)
\end{aligned}
$$

- $\lim _{x \rightarrow-\infty} f(x)$

$$
x-1 \leq f(x) \leq \frac{x}{3}: x<0 \text { لاينا من أجل }
$$

$\lim _{x \rightarrow-\infty} f(x)=-\infty: \lim _{x \rightarrow-\infty}(x-1)=\lim _{x \rightarrow-\infty} \frac{x}{3}=-\infty:$: ومنه

- $\lim _{x \rightarrow+\infty} f(x)$

$$
\frac{x-1}{3} \leq f(x) \leq x \quad: x \geq 1 \quad \text { لدينا من اجل }
$$

$\lim _{x \rightarrow+\infty} f(x)=+\infty$: ولاينا :

- $\lim _{x \rightarrow-3} \frac{x^{3}+27}{x+3}=\lim _{x \rightarrow-3} \frac{(x+3)\left(x^{2}-3 x+9\right)}{x+3}$

$$
=\lim _{x \rightarrow-3}\left(x^{2}-3 x+9\right)=27
$$

- $\lim _{x \rightarrow 1} \frac{x^{4}-4 x+3}{x^{5}-1}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{3}+x^{2}+x-3\right)}{(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)}$

$$
\begin{aligned}
& -x \leq-\left(x-\sin ^{2} x\right) \leq-x+1 \quad \cdots \\
& \text { (3) (3) } \\
& -\frac{x}{3} \leq \frac{-\left(x-\sin ^{2} x\right)}{2+\sin x} \leq-x+1 \text { : من (2) و (3) نجد } \\
& -\frac{x}{3} \leq-f(x) \leq-x+1 \text { وعليه }
\end{aligned}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{x^{4}+x^{2}+2-\left(x^{4}+3 x^{3}+3 x^{2}+2 x+1\right)}{\sqrt{x^{4}+x^{2}+2}+\left(x^{2}+x+1\right)}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{-3 x^{3}-2 x^{2}-2 x+1}{\sqrt{x^{4}+x^{2}+2}+\left(x^{2}+x+1\right)}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{x^{3}\left[-3-\frac{2}{x}-\frac{2}{x^{2}}+\frac{1}{x^{3}}\right]}{\sqrt{x^{4}\left(1+\frac{1}{x^{2}}+\frac{2}{x^{4}}\right)}+\left(x^{2}+x+1\right)}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{x^{3}\left[-3-\frac{2}{x}-\frac{2}{x^{2}}+\frac{1}{x^{3}}\right]}{x^{2}\left(\sqrt{1+\frac{1}{x^{2}}+\frac{2}{x^{4}}}+1+\frac{1}{x}+\frac{1}{x^{2}}\right)}
$$

$$
\lim _{x \rightarrow+\infty}\left[\sqrt{x^{4}+x^{2}+2}-\left(x^{2}+x+1\right)\right]=\lim _{x \rightarrow+\infty} \frac{x\left[-3-\frac{2}{x}-\frac{2}{x^{2}}+\frac{1}{x^{3}}\right]}{\sqrt{1+\frac{1}{x^{2}}+\frac{2}{x^{4}}}+1+\frac{1}{x}+\frac{1}{x^{2}}}=-\infty
$$

$$
\text { - } \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-\sqrt{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{\left[\sqrt{x^{2}+x}-\sqrt{x^{2}+1}\right]\left[\sqrt{x^{2}+x}+\sqrt{x^{2}+1}\right]}{\sqrt{x^{2}+x}+\sqrt{x^{2}+1}}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{x^{2}+x-\left(x^{2}+1\right)}{\sqrt{x^{2}+x}+\sqrt{x^{2}+1}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{x}+x+\sqrt{x}+1}{\sqrt{x^{2}\left(1+\frac{1}{x}\right)}+\sqrt{x^{2}\left(1+\frac{1}{x^{2}}\right)}}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{x\left(1-\frac{1}{x}\right)}{-x\left[\sqrt{1+\frac{1}{x}}+\sqrt{1+\frac{1}{x^{2}}}\right]}=\lim _{x \rightarrow \infty} \frac{1-\frac{1}{x}}{-\left[\sqrt{1+\frac{1}{x}}+\sqrt{1+\frac{1}{x^{2}}}\right]}=-\frac{1}{2}
$$

- $\lim _{x \rightarrow+\infty}\left[\sqrt{x^{4}+x^{2}+2}-\left(x^{2}+x+1\right)\right]$

$$
=\lim _{x \rightarrow+\infty} \frac{\left[\sqrt{x^{4}+x^{2}+2}-\left(x^{2}+x+1\right)\right]\left[\sqrt{x^{4}+x^{3}+2}+\left(x^{2}+x+1\right)\right]}{\sqrt{x^{4}+x^{2}+2}+\left(x^{2}+x+1\right)}
$$

- $\lim _{x \rightarrow+\infty} \frac{x-\sqrt{x^{2}+3}}{\sqrt{x^{2}+x-3}}=\lim _{x \rightarrow+\infty} \frac{x=\sqrt{x^{2}\left(1+\frac{3}{x^{2}}\right)}}{\sqrt{x^{2}\left(1+\frac{1}{x}-\frac{3}{x^{2}}\right)}}$
- $\lim _{x \rightarrow-\infty}\left[\sqrt{x^{4}+x^{2}+2}-\left(x^{2}+x+1\right)\right]$
$=\lim _{x \rightarrow+\infty} \frac{x-x \sqrt{1+\frac{3}{x^{2}}}}{x \sqrt{1+\frac{1}{x}-\frac{3}{x^{2}}}}=\lim _{x \rightarrow+\infty} \frac{x\left[1-\sqrt{1+\frac{1}{x}}\right]}{x \sqrt{1+\frac{1}{x}}-\frac{1}{x}}$

$$
=\lim _{x \rightarrow+\infty} \frac{1-\sqrt{1+\frac{3}{x^{2}}}}{\sqrt{1+\frac{1}{x}-\frac{3}{x^{2}}}}=0
$$

- $\lim _{x \rightarrow-\infty} \frac{x-\sqrt{x^{2}+3}}{\sqrt{x^{2}+x-3}}=\lim _{x \rightarrow-\infty} \frac{x-\sqrt{x^{2}\left(1+\frac{3}{x^{2}}\right)}}{\sqrt{x^{2}\left(1+\frac{1}{x}-\frac{3}{x^{2}}\right)}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{x+x \sqrt{1+\frac{3}{x^{2}}}}{-x \sqrt{1+\frac{1}{x}-\frac{3}{x^{2}}}}=\lim _{x \rightarrow-\infty} \frac{x\left[1+\sqrt{1+\frac{3}{x^{2}}}\right]}{-x \sqrt{1+\frac{1}{x}-\frac{3}{x^{2}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{1+\sqrt{1+\frac{3}{x^{2}}}}{-\sqrt{1+\frac{1}{x}-\frac{3}{x^{2}}}}=-2
\end{aligned}
$$

$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{x^{2}\left[m^{2}-m+\frac{2 m}{x}+\frac{1}{x^{2}}\right]}{x^{2}\left[m-1+\frac{1}{x}-\frac{2}{x^{2}}\right]}$
: $m \neq 1$ لاينا

$$
h(x)=\frac{1}{2}\left[\sqrt{1+x^{2}}+x+\sqrt{1+x^{2}}-x\right] \text { الدينا : }
$$

$\lim _{x \rightarrow+\infty} h(x)-x=\lim _{x \rightarrow+\infty} \sqrt{1+x^{2}}-x=0:$: $h(x)=\sqrt{1+x^{2}}$
ومنه : $y=x=x$ معادلة مستتقيم مقارب مانلّ بجوار م $y=-x$ ومنهد $\lim _{x \rightarrow-\infty} h(x)+x=\lim _{x \rightarrow-\infty} \sqrt{1+x^{2}}+x=0$
. مانل بجوار (5) انشاء بيان الدالة h h

TExas instruments TI-83 Plus

$$
=\lim _{x \rightarrow+\infty} \frac{m^{2}-m+\frac{2 m}{x}+\frac{1}{x^{2}}}{m-1+\frac{1}{x}-\frac{2}{x^{2}}}=\frac{m^{2}-m}{m-1}=\frac{m(m-1)}{m-1}=m
$$

1) حساب(f)(x)
$(f \times g)(x)=\left[\sqrt{1+x^{2}}+x\right]\left[\sqrt{1+x^{2}}-x\right]$

$$
=1+x^{2}-x^{2}=1
$$

$$
\text { 2) - تبيان أن } f(x) \geq 0 \text { : }
$$

. $f(x) \geq 0$ محققة دوما وعايه . $\sqrt{1+x^{2}}+x \geq 0: x \geq 0$ من أجل $\sqrt{1+x^{2}}>-x$: معناه $. \sqrt{1+x^{2}}+x>0 \quad: x<0$ من أجل 0 .
 عليه: : $g(x) \geq 0$ تبيان أن
. $g(x) \geq 0$ محققة دوما .ومنه : $\sqrt{1+x^{2}}-x>0: x<0$ من أجل $\sqrt{1+x^{2}}>x:$: معناه $\sqrt{1+x^{2}}-x>0 \quad: x \geq 0$ من أجل ومنه : $g(x) \geq \geq^{*} 0$: $1+x^{2}>x^{2}$: $1>0$ محقّ إن

وعليه :
3) استنتاج النهايات :

$$
f(x)=\frac{1}{g(x)}: \text { لدينا : }
$$

$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{1}{g(x)}=\lim _{x \rightarrow-\infty} \frac{1}{\sqrt{1+x^{2}}-x}=0 \quad: \quad$:

$$
=\lim _{x \rightarrow+\infty} \frac{1}{\sqrt{1+x^{2}}+x}=0: \text { ولدينا : } g(x)=\frac{1}{f(x)} \text { ومنه } g(x)
$$

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow+\infty} g(x)=0: \dot{j} \lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} \frac{1}{f(x)}
$$

 . $f: x \mapsto \tan x$ مستمرة على مجموعة تعريفها أي من أجل

$$
\mathrm{k} \in \mathbb{Z}, x \neq \frac{\pi}{2}+\mathrm{k} \pi \text { ي } \cos x \neq 0
$$

11-11- نشرية القيم المتّوسطة :
بالمرة 2 : (تظرية القيم المتونطة)

العدد C ليس بالضرورة وحيّ.

$$
[a ; b]
$$

 الخاصية السابقة تبقى صصيدة على كل م من المجالات : . $]-\infty ;+\infty[]-,\infty ; a[,[a ; \mathrm{b}],[a ; \mathrm{b}]$

$$
f(x)=\frac{1}{x+2} \quad \text { : عتير الدالة } f \text { ريث }
$$

I- الاوال المستمرة :
تعريف 1 :

 مثئل 1 :
$\lim _{x \rightarrow 2} x^{2}=4=f(2)$: مثالـ :
 $\lim _{x \rightarrow \frac{\pi}{2}} \cos x=0=f\left(\frac{\pi}{2}\right):$: الدالة : : تعريف 2 If I دالة معرفة على مجال f
. نقول عن f أنها مستمرة على I إذا كانت مستمرة عند كل قيمة من I I
ملاحظة :
 غاية الثنطة (b ; ;

خاصبة 1 :

- الثوال كثيرات الحدود مستّمرة عثى ا \mathbb{R} - اللدوال المثلثية : . \mathbb{R}_{+}ـ الثالـ - إدا كاتت f وg دالتّان مستمرتان على I 1 فبان : دوالل مستمرة على مجموعات تُريفها.

تعريف 5 :

$$
\begin{aligned}
& (81)^{\frac{3}{2}}=\left(81^{\frac{1}{2}}\right)^{3}=(\sqrt{81})^{3}=9^{3}=729 \\
27^{\frac{-4}{3}}= & \frac{1}{27^{\frac{4}{3}}}=\frac{1}{\left(27^{\frac{1}{3}}\right)^{4}}=\frac{1}{(\sqrt[3]{27})^{4}}=\frac{1}{3^{4}}=\frac{1}{81} *
\end{aligned}
$$

خاصبة 6 :
($\mathrm{y} 9 x$

- $x^{n} \times x^{p}=x^{n+p}$
- $x^{\mathrm{n}} \times y^{\mathrm{n}}=(x \times y)^{\mathrm{n}}$
- $\left(x^{n}\right)^{p}=x^{\text {n.p }}$
- $4^{\frac{1}{2}} \times 4^{\frac{1}{3}}=4^{\frac{1}{2}+\frac{1}{3}}=4^{\frac{1}{3}}$
- $\left(5^{\frac{1}{3}}\right)^{\frac{3}{5}}=5^{\frac{1}{3} \times \frac{3}{5}}=5^{\frac{1}{5}}$
- $3^{\frac{1}{5}} \times 4^{\frac{1}{5}}=(3 \times 4)^{\frac{1}{5}}=12^{\frac{1}{5}}$

$$
\lim _{x \rightarrow+\infty} f(x)=0, \lim _{x \rightarrow-2} f(x)=+\infty \quad:
$$

وعليه من أجل كل عدد حقيقي k من المجال] k "
]-2; ; $^{+\infty}$ [تقبل حلاوحيدا في المجال $f(x)=\mathrm{k}$
: n - iémes دالة الجذر -III
تعريف 3 :

و و متز ايدة تّماما على
k وبما أن 0 و من

$$
\text { يسمى الجذر n-ième ونرمز لهل : } \mathbf{k}^{\frac{1}{n}} \text { أو }
$$

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty, \lim _{x \rightarrow-\infty} f(x)=-\infty \text { : ويما أن }
$$

فإنه حسب الخاصية 4 من أجل كل عدد k من

مثال :
من أجل \mathbb{R}^{+}يسمى الجذر التُربيعي للعدد . $\sqrt{\mathbf{k}}$ ونرمز k

من أجل كل عدد طبيعي موجب تماما n ، نسمي دالثة الجذر n الدالة

$$
\text { المعرفة على } f(x)=\sqrt[n]{x}=x^{\frac{1}{n}}: \mathbb{R}^{+} \text {بالعبارة }
$$

خاصية 5 :
$f(0)=0$ د مستمرة و متز ايدة تماما و تحقق f n - ième دلهة الجنر $x \mapsto \sqrt[n]{x} \quad, x \mapsto x^{n}$, التمثيلين البياتيين للالتين $\lim _{x \rightarrow+\infty} f(x)=+\infty$,
/

$$
f(3)=1, f(x)=\frac{x^{2}-5 x+6}{x-3}, x \neq 3
$$

$$
\begin{aligned}
& f(x)=2 x^{2}+1: x \geq 0 \\
& f(x)=4 x+b: x<0
\end{aligned}
$$

 ر

$$
f(x)=3 x-5: \quad x<1:
$$

$$
f(x)=a x+2: 1 \leq x<4: w
$$

$$
f(x)=x^{2}-b: \quad x \geq 4 \text { : w }
$$

$$
\text { صرين العدان } \mathbb{R} \text { a }
$$

x	-5	2
$f(x)$	$2 \longrightarrow 1$	
	$-2 \longrightarrow$	

. \mathbb{R} ما هو عدد خلول المعادة 10 في $f(x)=-10$

$$
f(x)=x^{4}-4 x-10: \text { نعتّب الدالة } f \text { حيث }
$$

 2) إذا كاتت fو g د التان مستمرتان على I فأن الدالثة 3) \mathbb{R} الدالةة $x \mapsto|x|$ مستمرة على $x \mid$ (
4) الدالة

$$
\text { 5) إذا كانت } f \text { دالة مستمرة على مجال [} 0 \text { (} 0 \text { a b b }
$$

$$
f(a) \times f(b)<0
$$

.]a; b[قان : اللمعادلة $f(x)=0$ حلا على الألّل في المجال
共 $f(5)=10$ و $f(3)=4$ المجال [5; 3] 3]

8) إذا كانت f دالة مستمرة عتد عدد a من مجال فههي مستمرة عند كل قيّ I I .

التّمرين 2 :

الدرس الستمر ارية الدالةة f المعرفة على $f(x)$ بالعبارة :

$$
\mathbb{R} \text { عكى } f(x)=|4 x-5|
$$

$$
\text { التمرين } 4 \text { : }
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
f(x)=\frac{\sin 4 x}{x}, x \neq 0 \quad: \quad \text { دالة مer فهة كما يلـي } f \\
f(0)=4
\end{array}\right. \\
& \text {. } \mathbb{R} \text { الدرس اسنتمر اريةّ الدالة } f \text { عند } 0 \text { ثم على }
\end{aligned}
$$

$\alpha f(\mathrm{a})+\beta f(\mathrm{~b})=(\alpha+\beta) f(\lambda):[a ; \mathrm{b}]:$: بيث :
أثبت أن المعادلة $\cos x=x$ تقبل حلا وحيدا في المجال [12; 0]
الكتمرين 12 :
أنشر العبارات التّالية :
$A=\left(5^{\frac{3}{2}}+3^{\frac{5}{2}}\right)^{2} ; B=\left(3^{\frac{1}{2}}+2^{\frac{1}{2}}\right)^{2}$
$\mathrm{C}=\left(5^{\frac{1}{2}}+3^{\frac{1}{2}}\right)\left(5^{\frac{1}{2}}+3^{\frac{1}{2}}\right) ; \mathrm{D}=\left(3^{\frac{1}{3}}-2^{\frac{1}{3}}\right)^{3}$
التّمرين 13 :
بسط العبارات التّالية : $. \sqrt[3]{6} \times \sqrt[3]{36} ; \sqrt[3]{8} \times \sqrt[5]{2} ; \sqrt[2]{27} \times \sqrt[3]{9}$

التّترين 14 :المعادلة
 3
\qquad

$$
\left\{\begin{array}{l}
f(x)=x^{3}-x-\frac{|x-1|}{x-1}: x \neq 1 \quad \text { بالعبارة } \mathbb{R} \text { دالة معرفة على } f \\
f(1)=-1
\end{array}\right.
$$

3) أدرس استمر ارية الالةّة f على مجموعأت تعريفها .

أَّبت أن المعادلة : 16 أت
f
، حقيقيان موجبان بر هن أْكه يوجد على الأقلّ عدد حقيَّي

$$
\frac{5}{4}
$$

$$
f\left(\frac{5}{4}\right)=\left|4 \times \frac{5}{4}-5\right|=0
$$

$$
\lim _{\substack{x \rightarrow \frac{5}{4} \\ x \rightarrow \frac{5}{4}}} f(x)=\lim _{\substack{x \\ x \rightarrow \frac{5}{4}}}(4 x-5)=0=f\left(\frac{5}{4}\right)
$$

$$
\lim _{\substack{x \rightarrow \frac{5}{4}}} f(x)=\lim _{\substack{x \rightarrow \frac{5}{4}}}(-4 x+5)=0=f\left(\frac{5}{4}\right)
$$

$$
\frac{5}{4} \frac{5}{4} \text { من اليسار }
$$

$$
f(x)=4 x-5:] \frac{5}{4} ;+\infty[\text {. دراسة استمرارية على المجال }
$$

الدالةّf هي دالثة كثيرة حدود فهي مستمرة على $f^{\text {ها }}$ ومنه فهي مستمرة

$$
\text { el }] \frac{5}{4} ;+\infty[\text { : }: \text { المجال }
$$

$$
f(x)=-4 x+5 .]-\infty ; \frac{5}{4}[: \text { در اسة استمرارية على المجال } f
$$

الدالة f هي دالة كثيرة حدود فهي مستمرة على ${ }^{\text {الـى }}$ ومنه فهي مستمرة
. على المجال :

هما سبق :f مستمرة عند f ومستمرة على كل من المجالين :

نانذذ 1cm مقابل 5 على محور الفو اصل و 20 على محور الثتر اتيب. . $f(x)=130$ حل بيانيا المعادلة

Jو 1 (!)

$$
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} x^{3}-4 x=4
$$

وعليه : 2 . 2 . 2 ومذه $\lim _{x \rightarrow 2} f(x)=f(2)$ هستمرة

$$
\begin{aligned}
& \mathbb{R} \text { لدينا : لداسة اسنتّم اردية } f(x)=x^{2}-4 x \\
& f
\end{aligned}
$$

$$
\left\{\begin{array}{l}
f(x)=4 x-5 ; 4 x-5 \geq 0 \\
f(x)=-(4 x-5) ; 4 x-5 \leq 0
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
f(x)=4 x-5 ; x \geq \frac{5}{4} \\
f(x)=-4 x+5 ; x \leq \frac{5}{4}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text {. (C) (D) (D) }
\end{aligned}
$$

$$
f(x)=4 x+b: x<0 \text { : }
$$

$$
f(0)=2(0)^{2}+1=1: 0 \text { : الاستمر ارية عند }
$$

$\lim _{\substack{x \rightarrow 0}} f(x)=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} 2 x^{2}+1=1$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \underset{x \rightarrow 0}{ } \begin{gathered}x \rightarrow 0 \\ 4 x+b \\ x \rightarrow b\end{gathered}$

$$
D_{f}=\mathbb{R} \quad \text { : b g a }
$$

]- ; ; 1[$\quad f(x)=3 x-5: x<1$: W. W.

$$
f(1)=\mathbf{a}(1)+2=\mathbf{a}+2: 1 \text { ثشيرة شدولي : الاستمرارة }
$$

$$
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} 3 x-5=-2
$$

$$
\lim _{x \rightarrow 1}^{x \rightarrow 1} f(x)=\lim _{\substack{x \rightarrow 1 \\ x \rightarrow 1}} a x+2=\mathbf{a}+2
$$

$\lim _{x \rightarrow 4} f(x)=\lim _{x \rightarrow 4} a x+2=4 a+2=4(-4)+2=-14$
$\lim _{x \rightarrow 4} f(x)=\lim _{x \rightarrow 4} x^{2}+b=16+b$

$$
f(x)=0 \text { ـ عدد حكول المعادلة }
$$

. \mathbb{R} عى فه ${ }^{\text {في }}$ فستمرة إذن $] \frac{5}{4} ;+\infty[\mathrm{g}]-\infty ; \frac{5}{4}[$
ـ ـدر اسة استمر اريةة عند 0 :

$$
D_{f}=\mathbb{R}
$$

$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}=\lim _{x \rightarrow 0} 4 \times \frac{\sin 4 x}{4 x}$ $=4 \times 1=4$

ومنه : :
_

الدالة \mathbb{Z} الالة \mathbb{R} وعليه :
 الدالة

حاصل قسمةة دالثتين مستمرتين .

 در داسة استمّر ارية f عثى

$$
D_{f}=\mathbb{R} \quad: 3 \text { •الاستمر ارية عند } 3
$$

$\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{x^{2}-5 x+6}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x-2)}{x-3}=\lim _{x \rightarrow 3}(x-2)=1$ ومنه

- الاستمر ارية على •
 . \mathbb{R}. ويما أن f مستمرة عند 3 فهي إذن مستمرة عـى

$$
\text { التُتمرين } 6 \text { : }
$$

_ $f(x)=2 x^{2}+1: x \geq 0$ م.
$f(x)=0$ 0 2

f و $\lim _{x \rightarrow+\infty} f(x)=+\infty$ of $f(1)=-13$: لدينا $13 ;+\infty$ [1 المجال $f\left(x_{1}\right)=0 \quad$:
. x_{1}, x_{0}.

:

$$
2,067<x_{1}<2,068 \quad,-1,437<x_{0}<-1,436
$$

إثبات أن المعادلة
 - الدالة f تقبّل حلا وحيد في المجال [
 . - لاينا :

$$
f(1)=\cos 1-1 \quad, f(0)=1 \text { : ولدينا - . }] 0 ; 1[
$$

$$
\text { ونعلم } \cos x \leq 10)>0 \text { من أجل } \cos \text {. } f(1)<0 \text {. ومنه } x=\mathbb{R} \text {. } f(0)
$$

$$
\cdot f(0) \cdot f(1)<0:
$$

- في المجال [2; 0 [$f(-5) \times f(2)<0$: و وعليه $f(2)=1$ و 1 ولدينا : $f(-5)=-$

 $f(x)=0$ و $f(2) \times f(5)<0$ وبالتّالي للمعادلة $f(5)=-3$

$f(x)=-1$: عدد حلول المعادلة
 $f(1)=-3 \quad, \lim _{x \rightarrow-\infty} f(x)=2:$: ولدينا
 - في المجال : $[1 ;+\infty]$ و وعليه للمعادلة $f(x)=-1$ ($\lim _{x \rightarrow+\infty} f(x)=1$,

التمرين 10 :
1- دراسة اتجاه تغير الدالةةf

- $\left.D_{f}=\right]-\infty:+\infty[$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} x^{4}=+\infty \quad \quad \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} x^{4}=+\infty$
- $f^{\prime}(x)=4 x^{4}-4=4\left(x^{3}-1\right)$

\boldsymbol{x}	$-\infty$	1	$+\infty$
$\boldsymbol{f}^{\prime}(x)$	-	0	+

x	$-\infty$	1	$+\infty$	
$f^{\prime}(x)$		-	0	+
$f(x)$	$+\infty$			
			-13	

$$
\begin{aligned}
& =6^{\frac{1}{3}} \times 6^{2} \\
& =6^{\frac{1}{3}+\frac{2}{3}}=6
\end{aligned}
$$

$-\sqrt[3]{8} \times \sqrt[5]{2}=\left(8^{\frac{1}{3}}\right) \times\left(2^{\frac{1}{5}}\right)=\left(2^{3}\right)^{\frac{1}{3}} \times 2^{\frac{1}{5}}=2^{\frac{6}{5}}$

- $\sqrt[2]{27} \times \sqrt[3]{9}=(27)^{\frac{1}{2}} \times 9^{\frac{1}{3}}=\left(3^{3}\right)^{\frac{1}{2}} \times\left(3^{2}\right)^{\frac{1}{3}}=3^{\frac{3}{2}} \times 3^{\frac{2}{3}}$

$$
=3^{\frac{3+2}{2}}=3^{\frac{9+4}{6}}=3^{\frac{13}{6}}
$$

$2 x+5=9$: : (

$$
S=\{-\sqrt{2} ; \sqrt{2}\}: \text { ن }
$$

$$
2 x^{3}+5=9 \text { : } 3 \text { : خل في } \mathbb{R} \text { المعاديلة }
$$

$$
x^{3}=2: 2 x^{3}=4: \text { : ومنه } 2 x^{3}+5=9
$$

$$
S=\{\sqrt[3]{2}\}: \quad x=\sqrt[3]{2}: \quad \text {, }: x \text {, }
$$

$$
\text { 4 } 2 x^{4}+5=9 \text { : } \mathrm{C} \text { : في المعاديلة }
$$

$$
S=\{-\sqrt[4]{2} ; \sqrt[4]{2}\}:(j)
$$

5 5) الستختاج حلول المعادلة : $S=\{-\sqrt[n]{2} ; \sqrt[n]{2}\}:$: n مرجي مجموعة الحلول هي أجل . $S=\{\sqrt[n]{2}\}$: فن أجل n الالّرين 15

$$
\begin{aligned}
& A=\left(5^{\frac{3}{2}}-3^{\frac{5}{2}}\right)^{2}=\left(5^{\frac{3}{2}}\right)^{2}+2\left(5^{\frac{3}{2}}\right) \cdot 3^{\frac{5}{2}}+\left(3^{\frac{5}{2}}\right)^{2} \\
&= 5^{\frac{3}{2} \times 2}+2(5 \times 3)^{\frac{5}{2}}+3^{\frac{5}{2}}+3^{\frac{5}{2}} \times 2=5^{3}+2(15)^{\frac{5}{2}}+3^{5} \\
&= 125+2(15)^{\frac{5}{2}}+243=368+2(15)^{\frac{5}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& B=\left(3^{\frac{1}{2}}+2^{\frac{1}{2}}\right)^{2}=\left(3^{\frac{1}{2}}\right)^{2}-2\left(3^{\frac{1}{2}}\right) \times\left(2^{\frac{1}{2}}\right)+\left(2^{\frac{1}{2}}\right)^{2} \\
&=3-2(3 \times 2)^{\frac{1}{2}}+2=5^{3}+2(15)^{\frac{5}{2}}+3^{5}=5-2 \sqrt{6}
\end{aligned}
$$

$$
C=\left(5^{\frac{1}{2}}+3^{\frac{1}{2}}\right)\left(5^{\frac{1}{2}}-3^{\frac{1}{2}}\right)=\left(5^{\frac{1}{2}}\right)^{2}-\left(3^{\frac{1}{2}}\right)^{2}=5-3=2
$$

$$
\mathrm{D}=\left(3^{\frac{1}{3}}-2^{\frac{1}{3}}\right)^{3}=\left(3^{\frac{1}{3}}\right)^{3}-3\left(3^{\frac{1}{3}}\right)^{2} \times\left(2^{\frac{1}{3}}\right)+3\left(3^{\frac{1}{3}}\right) \times\left(2^{\frac{1}{3}}\right)^{2}-\left(2^{\frac{1}{3}}\right)^{3}
$$

$$
=3-3 \times 3^{\frac{2}{3}} \times 2^{\frac{1}{3}}+3\left(3^{\frac{1}{3}}\right) \times 2^{\frac{2}{3}}-2
$$

$$
=1-3^{1+\frac{2}{3}} \times 2^{\frac{1}{3}}+3^{1+\frac{1}{3}} \times 2^{\frac{2}{3}}=1-3^{\frac{5}{3}} \times 2^{\frac{1}{3}}+3^{\frac{4}{3}} \times 2^{\frac{2}{3}}
$$

التُمرين 13 :
التبسبط :

- $\sqrt[3]{6} \times \sqrt[3]{36}=6^{\frac{1}{3}} \times(36)^{\frac{1}{3}}=6^{\frac{1}{3}}(6)^{\frac{1}{3}}$

$$
\begin{aligned}
& \text { وبالتالي حسب نظرية القيم المتوسطة يوجد عدد وحي [[} \\
& \text {. } \cos x_{0}=x_{0} \text { حلا وحير أي } \cos x-x=0 \text { ومنه : للمعادلة } f\left(x_{0}\right)=0 \\
& \text {. } \cos x_{0}=x_{0} \text { حلاوحير أي } \cos x-x=0 \text { ومنه : للمعادلة } f\left(x_{0}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}+5=9 \text { : } \text { : } \\
& x=-\sqrt{2} \text {, } x=\sqrt{2}: \text { : } x^{2}=2: \text { : } 2 x^{2}=4 \text { ومنه }
\end{aligned}
$$

] $1 ; \frac{3}{2}\left[\right.$ إن للمعادلة $f(x)=0$. $f\left(x_{0}\right)=0$,

- : 16 ن̈r jaill
:

$$
f(x)=-\sin x+\frac{1}{4} \cos x
$$

$$
f(0)=-\sin 0+\frac{1}{4} \cos 0=\frac{1}{4}: \text { : }
$$

$$
\begin{aligned}
f\left(\frac{\pi}{4}\right) & =-\sin \frac{\pi}{4}+\frac{1}{4} \cos \frac{\pi}{4}= \\
& =\frac{-4 \sqrt{2}+\sqrt{2}}{8}=-\frac{3 \sqrt{2}}{8}
\end{aligned}
$$

$f(a)=0$, $\quad a \in] 0 ; \frac{\pi}{4}[/ a$ ومنا يوجد على على الأقل عدد . $] 0 ; \frac{\pi}{4}\left[\sin x+\frac{1}{4} \cos x=0:\right.$ تقبل حلا على الاقّل في المجال

$$
\alpha f(\mathrm{a})+\beta f(\mathrm{~b})<\alpha f(\mathrm{~b})+\beta f(\mathrm{~b})
$$

: α وبالثتالمي $\alpha(\mathrm{a})+\beta f(\mathrm{~b})<(\alpha+\beta) f(\mathrm{~b}):$:

$$
\begin{equation*}
\frac{\alpha f(\mathbf{a})+\beta f(b)}{\alpha+\beta}<\mathbf{f}(\mathbf{b}) \tag{1}
\end{equation*}
$$

$\beta f(b)>\beta f(a):$:بضرب الطرفين في $f(b)>f(a):$:
لِاضافة

$$
\begin{aligned}
& \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { : إلى طرفي اللمتباينة نجا } \beta \text { ر }
\end{aligned}
$$

$f(x)=x^{3}-x-\frac{|x-1|}{x-1}: x \in \mathbb{R}-\{1\}$ لدينا من أجل $\mathbb{R}-\{1\}$ وعليه الدالة f مeرفة على

$$
\text { لكن } \mathbf{D}_{f}=\mathbb{R} \text { ونـن } f(1)=-1 \text { وعرفة } 1 \text { و بالثنالي }
$$

2 - كتّابة f دون رمز القيمة المطثقة :لديثا

$$
\lim _{\substack{x \\ x \rightarrow 1}} f(x)=\lim _{\substack{x \\ x \rightarrow 1}} x^{3}-x-1=-1=f(1)
$$

$\lim _{>\rightarrow} f(x)=\lim x^{3}-x+1=1$

3) در اسة الاسنتمر اريةّ على ر

ه في المّجال [- في المجالٌ [1 ; 1 : \mathbb{R} 盾 غير أن f 4)
 $f(1) \times f\left(\frac{3}{2}\right)<0$ dog. $f\left(\frac{3}{2}\right)=\frac{7}{2} \quad$ g $f(1)=-1:$ و ولدينا

$$
\begin{cases}f(x)=\sin x+\sqrt{2} & ; x \geq 0 \\ f(x)=\sin x-\sqrt{2} & ; x \leq 0 \\ f(0)=\sqrt{2} & \end{cases}
$$

- $\lim _{\substack{x \rightarrow 0}} f(x)=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} \sin x+\sqrt{2}=\sqrt{2}$
- $\lim _{x \rightarrow 0} f(x)=\lim _{\substack{c \\ x \rightarrow 0}} \sin x-\sqrt{2}=-\sqrt{2}$

ولـنه الدالة f غير مستمرة: عند 0 .
1- تُيين مجموعة التعريف :

$$
f(x)=\frac{\frac{1}{\cos ^{2} x}-2 \tan x}{\cos 2 x} ; x \neq \frac{\pi}{4}
$$

$$
\begin{aligned}
D_{f}= & \left\{x \in\left[0 ; \frac{\pi}{2}\right]: \cos x \neq 0, \cos 2 x \neq 0\right\} \\
& \text { : } 2 x=\frac{\pi}{2}: \text { ي } \cos 2 x=0 \text { ئناه } x=\frac{\pi}{2} \text { : } \cos x=0
\end{aligned}
$$

$$
D_{f}=\left[0 ; \frac{\pi}{2}\left[: f\left(\frac{\pi}{4}\right)=0 \text { وعايه } x=\frac{\pi}{4}\right.\right.
$$

$$
\text { : } \frac{\pi}{4} \text { در اسة استمر ارية } f \text { عis }
$$

$$
\lim _{x \rightarrow \frac{\pi}{4}} f(x)=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\frac{1}{\cos x^{2}}-\frac{2 \sin x}{\cos x}}{\cos 2 x}
$$

$$
=\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-2 \sin x \cos x}{\cos x \cos 2 x}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{1-\sin 2 x}{\cos ^{2} x \cos 2 x}
$$

$$
z \longrightarrow 0
$$

$\alpha f(\mathrm{a})+\beta f(\mathrm{~b})>(\alpha+\beta) f(\mathrm{a}):$: $\frac{\alpha f(a)+\beta f(b)}{\alpha+\beta}>f(\mathrm{a}) \ldots$ (2) أي ان : $f(a)<\frac{\alpha f(a)+\beta f(b)}{\alpha+\beta}<f$ (b)

هن (1) و (2) :
]a; b [وحسب نظرية القيم المتوسطة يوجد على الاهّل عدد λ من المجال

$$
\begin{aligned}
& \frac{\alpha f(a)+\beta f(b)}{\alpha+\beta}=f(\lambda) \quad: \quad \text { بحيث } \\
& \alpha f(a)+\beta f(\mathrm{~b})=(\alpha+\beta) f(\lambda): \\
& \text { 2) إذا كان : }
\end{aligned}
$$

التصرين 18 :
. $x \neq 0$: لدينا : $f(x)=\sin x+\frac{\sqrt{1-\cos 2 x}}{\sin x}$

- $D_{f}=\left\{x \in\left[\frac{-\pi}{2} ; \frac{\pi}{2}\right]: 1-\cos 2 x \geq 0, \sin x \neq 0\right\}$
. $x \neq 0$ كينا $\sin x \neq 0$ كناه
($\cos 2 x \leq 1$: $1-\cos 2 x \geq 0$

$$
\begin{aligned}
& \text { - }\left[\frac{-\pi}{2} ; \frac{\pi}{2}\right]-\{0\} \text { ومنه } f \text {. }\left[\frac{-\pi}{2} ; \frac{\pi}{2}\right] \\
& \text { • } \left.\left.\cdot \frac{-\pi}{2} ; \frac{\pi}{2}\right] \text { فيما أن } f(0)=\sqrt{2}\right] \text { معرفة } f(x) \text { علم }
\end{aligned}
$$: $f(x)$ تبسيط

$\sqrt{1-\cos 2 x}=\sqrt{1-\left(1-2 \sin ^{2} x\right)}=\sqrt{2 \sin ^{2} x}$
$\sqrt{1-\cos 2 x}=\sqrt{2}|\sin x|$

$$
\left\{\begin{array}{l}
f(x)=\sin x+\frac{\sqrt{2}|\sin x|}{\sin x} \\
f(0)=\sqrt{2}
\end{array}\right.
$$

ومنه :

x	0	20	$+\infty$
$\boldsymbol{g}^{\prime}(x)$	-	\oint^{2}	+

x	0	20	$+\pi$	
$g^{\prime}(x)$	-	1	+	
$g(x)$	-100		$+\infty$	

$$
\begin{array}{r}
g(20)=(20)^{3}-1200(20)-100=-16100 \\
: ~: ~(3)
\end{array}
$$

$$
\begin{gathered}
g(20)=-16100 \\
g(40)=(40)^{3}-1200(40)-100=15900
\end{gathered}
$$

$$
g(20) \cdot g(40)<0
$$

لدينا g متز ايدة تماما على المجال [40 ; 0 20 20] حسب نظرية القيم المتوسطة

x	0	α	$+\infty$
$g(x)$	-	0	+

(1 - II حساب نهايات الدالةّ f :

$$
\text { - } \lim _{x \rightarrow \frac{\pi}{4}} f(x)=\lim _{z \rightarrow 0} \frac{1-\sin 2\left(\frac{\pi}{4}+z\right)}{\cos ^{2}\left(\frac{\pi}{4}+z\right) \cos 2\left(\frac{\pi}{4}+z\right)}
$$

$$
=\lim _{z \rightarrow 0} \frac{1-\sin \left(2 z+\frac{\pi}{2}\right)}{\cos ^{2}\left(\frac{\pi}{4}+z\right) \cos \left(\frac{\pi}{2}+2 z\right)}=\lim _{z \rightarrow 0} \frac{1-\cos 2 z}{-\cos ^{2}\left(\frac{\pi}{4}+z\right) \sin 2 z}
$$

$$
=\lim _{z \rightarrow 0} \frac{1-\left(1-2 \sin ^{2} z\right)}{-\cos ^{2}\left(\frac{\pi}{4}+z\right) \sin 2 z}=\lim _{z \rightarrow 0} \frac{2 \sin ^{2} z}{-\cos ^{2}\left(\frac{\pi}{4}+z\right) \sin 2 z}
$$

$$
=\lim _{z \rightarrow 0} \frac{-2 \sin z}{2 \cos ^{2}\left(\frac{\pi}{4}+z\right) \cos z}=0=f\left(\frac{\pi}{4}\right)
$$

$$
\text { ومنده } f \text { مستمرة عند } \frac{\pi}{4} \text {. }
$$

|| التمرين 20 :
$\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} g(x)=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} x^{3}-1200 x-100=-100$
$\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} x^{3}\left[1-\frac{1200}{x^{2}}-\frac{100}{x^{3}}\right]=+\infty$

$$
\begin{aligned}
& g^{\prime}(x)=3\left(x^{2}-400\right): \text { (1) لدينا : } \\
& \text { (مرفوضة) } x=-20 \text { وناه } g^{\prime}(x)=0
\end{aligned}
$$

$$
\begin{aligned}
& f(\alpha)=\alpha+50+\frac{1200 \alpha+50}{\alpha^{2}}=\frac{\alpha^{3}+50 \alpha^{2}+1200 \alpha+50}{\alpha^{2}} \\
& \alpha^{3}-1200 \alpha-100=0 \quad: \quad g(\alpha)=0 \quad \text { : } \quad \text { : } \\
& \alpha^{3}=1200 \alpha+100 \\
& f(\alpha)=\frac{1200 \alpha+100+50 \alpha^{2}+1200 \alpha+50}{\alpha^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{|x| \rightarrow+\infty} \frac{1200 x+50}{x^{2}}=0: 0 \text { : } \\
& \text { الّن (D) مستقيم مقارب مائل . }
\end{aligned}
$$

(C) (D) (D) الشّاء (D)
x=0友. $y=x+50$

$$
f(x)=130 \text { :6 الحل الثياني للمعاديلة }
$$

بياتيا للمعادلة : 130 حلين متمايزين هما بالتّقريب 20 و 60 .

- $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x+50+\frac{1200 x+50}{x^{2}}$

$$
=+\infty
$$

- $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} x+50+\frac{1200 x+50}{x^{2}}$

$$
=\lim _{x \rightarrow+\infty} x+50+\frac{1200}{x^{2}}+\frac{50}{x^{2}}=+\infty
$$

$f^{\prime}(x)=1+\frac{1200 x^{2}-2 x(1200 x+50)}{x^{2}}=\frac{x^{4}+1200 x^{2}-2400 x^{2}-110 x}{x^{4}}$

$$
f^{\prime}(x)=\frac{x\left[x^{3}-1200 x-100\right]}{x^{4}} \frac{x^{3}-1200 x-100}{x^{3}}: \text { وعليه - }
$$

$$
f^{\prime}(x)=\frac{g(x)}{x^{3}} \quad: \quad \text { ! }
$$

3) در اسنة تغيرات الدالة f:

$f^{\prime}(x)=\frac{g(x)}{x^{3}}:$					
x	0	α		$+\infty$	
$g(x)$		-	0	+	
x^{3}	0	+		+	
$f^{\prime}(x)$		-	0	+	

- جدول التنيرات :

x	0	α		$+\infty$
$f^{\prime}(x)$	-	ϕ	+	
$f(x)$				

$$
\frac{d y}{d x}=f^{\prime}(x) \text { 边 } \frac{d y}{d x}: \text { :لعدا } f^{\prime}(x) \text {. } f^{\prime}: x \mapsto f^{\prime}(x)
$$

$$
d y=f^{\prime}(x) \cdot d x:
$$

．
． 0 ． 0 الدالة ：
：讪 少

 ت تقبل الاشتقاق على $f: x \mapsto \cos x$ ：لأهـها داللة مثلثية

$$
h^{\prime}(x)=-\sin \left(2 x-\frac{\pi}{4}\right) \times 2: \operatorname{sing} \cdot h^{\prime}(x)=f^{\prime}[g(x)] \times g^{\prime}(x)
$$

$$
h^{\prime}(x)=-2 \sin \left(2 x-\frac{\pi}{4}\right)
$$

1－تُعريف العثدد المشُّقّ ：

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\ell: ت
$$

حيث $f^{\prime}\left(x_{0}\right)=\ell:$ عدد حقيقي ثابت ويدعى الـعدد المششتق للدالة f عند f_{0} ونكتب
مـلاحظات ：

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\ell: x-x_{0}=h \text { بنـ } 1
$$

（2
لا تقبل الاشنقّقاق عند
｜التفسير الـهندسي ：
 مماسا معامل توجيهه التفسير العددي ：

إذا كاتت اللا اللة f تقبل الوشُتّقاق عند
x_{0} هـي تقريب للـاللة $x \mapsto f^{\prime}\left(x_{0}\right) \times\left(x-x_{0}\right)+f\left(x_{0}\right)$

$$
\text { ويكون لدينا } f(x)-f\left(x_{0}\right) \simeq f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

.$\Delta y \simeq f^{\prime}\left(x_{0}\right) \cdot \Delta x$
2－الدالة المشئقّة لدالـة ：

لتكن f دالة قابلة للاشُتقاق على مجال او دالتها المشيتقة

 . $f^{(n)}$ المشُتقة من مر اتب عليا فنعرف اللالة المشتّقة من الرتبة n ونرمز لها بالرمن

$$
f^{\prime}(x)=5 x^{4}+9 x^{2}-5 \quad ; \quad f^{\prime \prime}(x)=20 x^{3}+18 x
$$

$f^{(3)}(x)=60 x^{2}+18 \quad ; \quad f^{(4)}(x)=120 x$
$f^{(5)}(x)=120 \quad ; \quad f^{(6)}(x)=0$

$$
\text { ومنه من أجل } f^{(n)}(x)=0 \quad: n \geq 6
$$

: 7
 . f نقطة انحطاف لمنحنى الالد $\mathrm{A}\left(x_{0} ; f\left(x_{0}\right)\right)$ 8- اتجاه تغظر دالـة :

 تكون الدالة f متز ايدة تماما على I إذا وفقط إذا كانت
 تكون الدالدّة f متناقصة تماما على I إذا وفقط إذا كانت ${ }^{\prime}$ سالبة تماما على I أو
. I I . 9 - حل معادلات تفاضلية : النوع الأول :

$$
\text { . } g^{\prime}(x)=f(x): y^{\prime}=f(x) \text { وهو إيجاد دالة } y^{\prime} \text { وي }
$$

$$
\text { g } \mathrm{g}^{\prime \prime}(x)=f(x) \text { : حيث g } \mathrm{g} \text {. } y^{\prime \prime}=f(x)
$$

$$
\text { دل المعادلة التفاضلية : } y^{\prime \prime}=4 x+5 .
$$

. $x \mapsto \sin (\mathrm{ax}+\mathrm{b})$: مشتّقة الدالة هي الالة : :

اللآلة	الآلدّة المشّتّةّ	هجالل الاشتّقاق
$x \mapsto \mathbf{k}$ k	$\boldsymbol{x} \mapsto 0$	\mathbb{R}
$\boldsymbol{x} \mapsto \boldsymbol{x}$	$x \mapsto 1$	\mathbb{R}
$x \mapsto x^{\mathrm{n}}, \mathrm{n} \in \mathbb{N}$	$x \mapsto n x^{n-1}$	\mathbb{R}
$x \mapsto \frac{-\mathrm{n}}{\mathrm{x}^{\mathrm{n}}}, \mathrm{n} \in \mathbb{N}$	$x \mapsto \frac{-\mathrm{n}}{\mathrm{x}^{\mathrm{n}+1}}$	\mathbb{R}^{*}
$x \mapsto \sqrt{x}$	$x \mapsto \frac{1}{2 \sqrt{x}}$	\mathbb{R}_{+}^{*}
$x \mapsto \sin x$	$x \mapsto \cos x$	\mathbb{R}
$x \mapsto \cos x$	$x \mapsto-\sin x$	\mathbb{R}

(1)	اللاالة المشّتّة	هلاحظات
$f+g$	$f^{\prime}+g^{\prime}$	
$k f$	$k f^{\prime}$	k
$f \times g$	$f^{\prime} \times g+f \times g^{\prime}$	
$\frac{1}{f}$	$\frac{-f^{\prime}}{f^{2}}$	$f(x) \neq 0$
$\frac{f}{g}$	$\frac{f^{\prime} \times g-f \times g^{\prime}}{g^{2}}$	$g(x) \neq 0$
f^{n}	$n \times f^{\prime} \times f^{n-1}$	$n \in \mathbb{Q}$
\sqrt{f}	$\frac{f^{\prime}}{2 \sqrt{f}}$	$f(x)>0$

لدينا : $y=\frac{2}{3} x^{3}+\frac{5 x^{2}}{2}+\mathrm{kx}+\mathrm{c}:$ حيث : k ح عددان حقيقيان $y^{\prime}=2 x^{2}+5 x+\mathrm{C}$. ثابتان
الثتــــاربــنـن

ضع العلامة ل أمام كل جملة صحيحة و العلامة × 1 أمام كل جملة خاطكة .

$$
f^{\prime}(3)=4: \text { : } 1 \text { : إنا كاتت } \lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=4
$$

$$
\text { 2) ؛ذا كان : } 3 \text { = } 3 \text { f } f^{\prime}(2) \text { مستمرة عثد } 2 .
$$

. $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=3$: : $_{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=3:$: 3 4) إذا كتت : 1 (5) 5) إذا كاتت :

$$
\text { (6) إذا كان : } \lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=2: \text { : } f^{\prime}(0)=2
$$

 8) توجد دالة

 10) إذا كانت ومنعدمة على المجال [4; 4-4
11) إذا كانت f غير قابلة كلاشتقاق عند عدد 12) إثا كانت الدالة f غيز مستمرة عند عدد

$f(x)=\sqrt{2 \sin ^{2} x+1}\left(14 \quad f(x)=\frac{\cos x}{\sin x-1}(13\right.$

$$
f(x)=\tan x-\sin x+1
$$

x	$-\infty$	-3	$+\infty$
$f^{\prime}(x)$	$\longrightarrow 2$		

x	$-\infty$	1	$+\infty$
$g^{\prime}(x)$		-4	

الستنتج اتجاه تغير كل من الدالتتين fور
التمرين 6 :
ن نتبر الدالة $f(x)=2 x^{2}-4+4|x+3|$ | المعرفة بالعبارة f. f. 1) ادرس قابلية الاشتقاق للالدة f عغد 0 . 2) الدرس قابلية الاشتّقاق للادلة f عند 3-

التّمرين 7 :
: f

$$
\left\{\begin{array}{l}
f(x)=\frac{\sqrt{x^{2}(x+2)^{2}}}{(x+2)(|x|+2)} ; x \neq-2 \\
f(-2)=\frac{1}{2}
\end{array}\right.
$$

1) ادرس استمرارية الدالةّf غند 2- .

اللتمرين 4 :
عين مجمو عة تعريف الدالةة و المجموعة التّي تقبل فيها الاشتقاق ثم الحسب دالتها المشتقة فيم كل حالة ممايلي :

$$
\begin{array}{r}
f(x)=\frac{3}{x+1}-\frac{5}{x}+2 \quad\left(2 \quad f(x)=\frac{3}{4} x^{4}-\frac{5}{2} x^{2}+x\right. \\
f(x)=\frac{x^{2}}{x^{2}-4} \\
f(x)=\frac{\sqrt{x}-4}{x-1} \\
f(x)=\sqrt{2 x-3}+x \\
f(8) . \\
f(x)=\sqrt{\frac{2 x-2}{x+3}}(10 .
\end{array}
$$

$$
f(x)=\sin ^{4} x\left(12 . \quad f(x)=\cos \left(2 x-\frac{\pi}{3}\right)+\sin 2 x(11\right.
$$

1) الدرس تغيرات الادالة f على [2; 2 2-2

 التّرين 14 :

- احسب في كل حالة مما يلي (fog)

$$
\begin{align*}
& g(x)=\cos x \\
& g(x)=5 x-3 \\
& . g(x)=\sqrt{x} \\
& . g(x)=x \tag{4}
\end{align*}
$$

$$
g(x)=x^{3}-3 x-4 \text { : نحتبر الدالة } \text { : المعرفة بالعبارة }
$$

1) أدرس تغيرات الدالة g.
 3) استختّج إشارة (

$$
f(x)=\frac{x^{2}(x+2)}{x^{2}-1} \quad \text { نعبّ الدالة } f \text { (II) }
$$

 1- عين

$$
f(x)=a x+b+\frac{c x+d}{x^{2}-1}: \text { فان }
$$

3- بين أن (C) يقبل مستقيما مقاريا مانلا ((() يطلب إعطاء معالثته.

> 4- ادرس الوضعية النسبية للمستقيم (() و المنحنى (C) .
2) الدرس قّابلهة الائتُقاق للادالةُ عند 2التّرين 8
$f(x)=\frac{1}{x-1}:$: f

$$
\text { 1 } f^{(4)}(x) \text { احسب }
$$

$$
\text { 2) استتنتج (n) } f^{(n)}
$$

$$
\text { نعتبر الدالةة } f(x)=\sin x \text { المعرفة بالعبارة : }
$$

$$
f^{(5)}(x) ; f^{(4)}(x) ; f^{(3)}(x) ; f^{\prime \prime}(x) ; f^{\prime}(x) \quad \text { احسب كل من }
$$

$$
\text { . } f^{(n)}(x) \text { استتتج عبارة }
$$

\qquad
. $f(x)=\sin ^{2} x$ نعبّبر الدالةّ f حيث بين اتهه من أجل كل عدد حقيقي x فأن : $f^{\prime \prime}$. $f^{\prime \prime}(x)+4 f(x)-2=0$
\qquad
 1) أنرس اتجاه تغير الدالة 2) استتتتج (تجاه تغير الدالة f على]

$$
\left.f(x)=(x+4) \sqrt{4-x^{2}}: \text { : } 2 ; 2\right] \text { دالة معرفة على المجال } f \text { بالعبارة }
$$

$$
\begin{aligned}
& f(x)=\cos x-1+\frac{x^{2}}{2}: \text { : بالعبارة } f \\
& \text { 1) الدرس اتجاه تغير الدالة } \\
& \text { 2) ا استتّج اتجاه تنغير الاالةّf على } \\
& \text { 3) استتتج أنه من أجل كل عدد حقيقي x فأن : }
\end{aligned}
$$

(1) عين هجموعة التعريف ${ }^{\text {(}}$ للدالة
. $f^{\prime}(x)=\frac{2(x+2)\left(x^{2}+x+1\right)}{(x+1)^{3}}$) بين انهن من اجل كل عده x من 3) ادرس تغغيرات الدالثة f. (3) بين أن المستقيم الأي معالدته : x0 (C) يقطع محور الفو اصل في نقطة وحيدة فاصلتها

$$
\frac{-3}{8}<x_{0}<\frac{-1}{4}: \text { حبث }
$$

6) اكتب معادلة المماس في النّططة ذات الفاصنة 0 .
7) انشّن (C) .

 . $2 x^{3}+(7-m) x^{2}+2(4-m) x+2-m=0$

($O ; \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}$) التُمثيل الثياني في معلم متعامد و متجانس (C) (C) . $f(x)=\sqrt{x^{2}-2 x+2}$:لالدالة f المعرفة بالعبارة

5- بين ان (C) يقبل مستقيمين مقاربين عهوديين.
6- بين أن إشارة 7- اكتب جدول تغيرات الدالة f. 8- أنشىئ (C) باستحمـال إدلى برمجيات اللتمثيل البياني . ن. $f(x)=\frac{\left|x^{2}-3 x\right|}{x+1}: 16$ التمرين على 16 - . 2) اكتب (1)
3) بين أنه يمكن كتابة $f(x)=\mathrm{ax}+\mathrm{b}+\frac{\mathrm{c}}{x+1}$ على $f(x)$ في كل حالة.
4) احسب
(5) احسب
6) الدرس تغير ات الدالثة
7) ليكن (C) التمثيل البياني للدالة 1 (C) بين أن المستقيم (4 (الذي معادلتّه: $y=x-4$ (C) مستّقيم مقارب للمنحنى

$$
\text { 8) أنشئ ((} \mathrm{C} \text {) و (C) . }
$$

9) ناقشن بيانيا حسب قيم الوسسط الحقيةي m عدد حلول المعادلة :

$$
\text { m=1 } 1 \text {. }\left|x^{2}-3 x\right|=m(x+1)
$$

التمرين 17 :
. $f(x)=2 x+3-\frac{1}{(x+1)^{2}} \quad$: f
. $(O ; \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}})$ تمثشالها البياني في معلم متعامد و متجانس (C)
 حيث a , b , c, d أعداد حقّيقّة وطلب تُعينها . 3) الدرس تغيرات الدالةّة 4) - بين أن (C) يقبل مستقيهين مقاربين أحدهما مائل (ه) - ادرس وضعية (C) بالنسبة إلى (() . 5) بين أنه يوجد عدد حقيقي α من المجال $f(\alpha)=0 \frac{2}{3} ; \frac{3}{4}$ بحيث

$$
\text { 6) اكتب معادلة المماس للمنحنى (C) عند النقطة (A (2; } \mathrm{C} \text { (2) }
$$

أنشى (C) .
7) ناقشّ بيانيا حسب قيم الوسبط الحقيقي m عدد حكول المعادلة :

$$
f(x)-2 m=0
$$

$$
g(x)=|x|-2+\frac{3|x|-2}{(|x|-1)^{2}} \text { : } 8 \text { : تتكن الدالة المعرفة باليعبارة }
$$

- عين - استنتج إنشاء تمثيلها البياني (C') في المعلم السابق .

(I) استنتج من خلا البيان : 1) اتجاه تغيز الثالةّ f.

2) محور تناظر المنحنى (C) (C)
3) نهايات الـالة f عند
4) معادلتي المستققيمين المقاربين الماتلّين و وضعيتهما بالنسبة إلى (C) .
(III) برهن حسابيا على صحة النتائج السابقة.

$$
\begin{aligned}
& \text {. } f(x)=\frac{x^{3}-4 x^{2}+8 x-4}{x^{2}-2 x+1}: \text { : } f \\
& \text {. }(O ; \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}) \text { تثثيلها البياني في معلم متعامد ومتجانس (C) }
\end{aligned}
$$

$$
\lim _{x \rightarrow 3} \frac{x-8+\frac{5}{x-2}}{x-3}=\lim _{x \rightarrow 3} \frac{\frac{(x-8)(x-2)+5}{x-2}}{x-3}
$$

$\lim _{x \rightarrow 3} \frac{x^{2}-10 x+21}{(x-3(x-2)}=\lim _{x \rightarrow 3} \frac{(x-3)(x-7)}{(x-3(x-2)}=\lim _{x \rightarrow 3} \frac{x-7}{x-2}=-4$ الـن الدالة f تققبل الاشثتقاق عند 3 حيث 4 $f^{\prime}(3)=-2$.

$$
\left.\left.f(x)=\sqrt{5-x} \quad ; \quad D_{f}=\right]-\infty ; 5\right]
$$

$$
f(0)=\sqrt{5}: \text { :لدينا }
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\sqrt{5-x}-\sqrt{5}}{x} \\
& =\lim _{x \rightarrow 0} \frac{[\sqrt{5-x}-\sqrt{5}][\sqrt{5-x}+\sqrt{5}]}{x[\sqrt{5-x}+\sqrt{5}]} \\
& =\lim _{x \rightarrow 0} \frac{5-x-5}{x[\sqrt{5-x}+\sqrt{5}]}=\lim _{x \rightarrow 0} \frac{-x}{x[\sqrt{5-x}+\sqrt{5}]}
\end{aligned}
$$

$$
\text { لذن } f^{\prime}(0)=\frac{-\sqrt{5}}{10}: \text { تقبل الاششتقاقَ عند } 0 \text { حيث }
$$

$$
f(x)=\sqrt{8 x^{2}-10 x+3} ; x_{0}=\frac{3}{4}
$$

$$
\text { . لاينا : } D_{f}=\left\{x \in \mathbb{R}: 8 x^{2}-10 x+3 \geq 0\right\}
$$

$$
\text { ندرس إشارة: : } 8 x^{2}-10 x+.
$$

$$
\text { لاينا : } \Delta=(-10)^{2}-4(8)(3)=100-96=4 \quad
$$

$$
x_{1}=\frac{10-2}{16}=\frac{1}{2} \quad ; \quad x_{2}=\frac{10+2}{16}=\frac{12}{16}=\frac{3}{4}: \text { ومنه }
$$

التّمرين 2 :

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{x^{3}-x^{2}+4-8}{x-2} \\
= & \lim _{x \rightarrow 2} \frac{x^{3}-x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+x+2\right)}{x-2}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 2}\left(x^{2}+x+2\right)=8
$$

$$
\text { إذن الدادلة f تقبل الاشتقاق عدد } 2 \text { حيث } f^{\prime}(2)=8 \text {. }
$$

$$
f(x)=x+3+\frac{5}{x-2} \quad ; \quad x_{0}=3
$$

$$
f(3)=11 \quad ; \quad \mathrm{D}_{\mathrm{f}}=\mathbb{R}-\{2\}
$$

$$
\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=\lim _{x \rightarrow 3} \frac{x+3+\frac{5}{x-2}-11}{x-3}
$$

$$
\begin{aligned}
& \text {. } f(x)=x^{3}-x^{2}+4 \quad ; \quad x_{0}=2\left(1 \quad x_{0}\right. \text { دراسة قابلية الإشتّقاق عـن } \\
& \text {. } D_{f}=\mathbb{R} \quad, \quad f(2)=8: \text { لدينا }
\end{aligned}
$$

كتابة $f(x)$ دون رمز القيمة المطلةة :

$$
\begin{aligned}
& \left\{\begin{array}{l}
f(x)=\frac{x-4+2 x+4}{x+2} ; x \geq 4 \\
f(x)=\frac{-x+4+2 x+4}{x+2} ; x \leq 4
\end{array}\right. \\
& \left\{\begin{array}{l}
f(x)=\frac{3 x}{x+2} ; x \geq 4 \\
f(x)=\frac{x+8}{x+2} ; x \leq 4
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4} \frac{\frac{3 x}{x+2}-2}{x-4} \\
= & \lim _{x \rightarrow 4} \frac{\frac{3 x-2 x-4}{x+2}}{x-4}=\lim _{x \rightarrow 4} \frac{x-4}{(x-2)(x-4)}=\frac{1}{6}
\end{aligned}
$$

$$
\text { إنن f تقّبل الاشئتقاق عثد } 4 \text { من اليمين. }
$$

$$
\text { - } \begin{aligned}
\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4} & =\lim _{x \rightarrow 4} \frac{\frac{x+8}{x+2}-2}{x-4} \\
& =\lim _{x \rightarrow 4} \frac{\frac{x+8-2 x-4}{x+2}}{x-4}=\lim _{x \rightarrow 4} \frac{-x+4}{(x+2)(x-4)}
\end{aligned}
$$

$$
\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4} \frac{-(x-4)}{(x-2)(x-4)}
$$

$$
=\lim _{x \rightarrow 4} \frac{-1}{x+2}=\frac{-1}{6}
$$

x	$-\infty \quad \frac{1}{2}$	$\frac{3}{4} \quad+\infty$
$8 x^{2}-10 x+3$	+	+ +

 لندرس قابية الاشئتقاق غد

$$
\begin{aligned}
& \lim _{x \longleftarrow \frac{3}{4}} \frac{f(x)-f\left(\frac{3}{4}\right)}{x-\frac{3}{4}}=\lim _{x \longleftarrow-\frac{3}{4}} \frac{f(x)-f\left(\frac{3}{4}\right)}{x-\frac{3}{4}} \\
&=\lim _{x \longleftarrow 4} \frac{\sqrt{8 x^{2}-10 x+3} \times \sqrt{8 x^{2}-10 x+3}}{\left(x-\frac{3}{4}\right) \sqrt{8 x^{2}-10 x+3}} \\
&=\lim _{x \hookleftarrow \frac{3}{4}} \frac{8\left(x-\frac{1}{2}\right)}{\sqrt{8 x^{2}-10 x+3}}=+\infty \\
& .
\end{aligned}
$$

$$
f(x)=\frac{|x-4|+2 x+4}{x+2} ; x_{0}=4
$$

$$
f(4)=2 ; \mathbf{D}_{f}=\mathbb{R}-\{-2\} \text { : لدينا }
$$

$=\lim _{x \rightarrow 4} \frac{\frac{x^{2}-3 x-6-4 x+16}{x-4}}{x-4}=\lim _{x \rightarrow 4} \frac{x^{2}-7 x+10}{(x-4)^{2}}=-\infty$
 التّرين 3 : : $f^{\prime}(-6)$ (1) الستتّاج

$$
f^{\prime}(6)=1 \text { : } f^{\prime}(6)=\frac{3-0}{9-6} \text { إن } f^{\prime} \text { هو ميل المعاس (} f^{\prime}(6) \text { ومنه }
$$

$$
f^{\prime}(-2)=\frac{8-0}{0-(-6)}=\frac{8}{6}=\frac{4}{3}: \text { ومنه (D) (D) هو ميل المطاس } f^{\prime}(-6)
$$

2) ساب النّهايات :

$$
\begin{aligned}
& \lim _{x \rightarrow 6} \frac{f(x)-f(6)}{x-6}=\lim _{x \rightarrow 6} \frac{f(x)}{x-6}=f^{\prime}(6)=1 \\
& \frac{f(x)-f(-6)}{x-(-6)}=\lim _{x \rightarrow-6} \frac{f(x)}{x+6}=f^{\prime}(-6)=\frac{4}{3}
\end{aligned}
$$

$(\Delta): y=f^{\prime}(6) \times(x-6)+f(6)$
3) كتابة معادلة (() :
$(\Delta): y=x-6$

$$
(D): y=f^{\prime}(-6) \times(x+6)+f(-6)
$$

كتابة معادلة (D) :
(D) : $\mathrm{y}=\frac{4}{3} x+8$

$$
\begin{aligned}
& f(x)=\frac{3}{4} x^{4}-\frac{5}{2} x^{2}+x \\
& f^{\prime}(x)=3 x^{3}-5 x+1 \quad D_{f}=D_{f^{\prime}}=\mathbb{R}
\end{aligned}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
f(x)=x-\sqrt{x-4} ; x \geq 4 \\
f(x)=\frac{x^{2}-3 x-6}{x-4} ; x<4
\end{array}\right. \\
& f(x)=x-\sqrt{x-4} \quad: x \geq 4 \quad \text { لاينا من أجل وعله : } \quad x-4 \geq 0
\end{align*}
$$

$$
\text { و من اجبل } f(x)=\frac{x^{2}-3 x-6}{x-4}: x<1
$$

$$
x \in]-\infty ; 4\left[\begin{array}{c}
\text { g } \\
\text { وليه } \\
x-4 \neq 0
\end{array}\right.
$$

$$
D_{f}=\mathbb{R}:
$$

$$
\text { وولاينا : } f(4)=4-\sqrt{4-4}=4
$$

- $\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4} \frac{x-\sqrt{x-4}-4}{x-4}$

$$
=\lim _{x \rightarrow 4}\left(1-\frac{\sqrt{x-4}}{x-4}\right)
$$

$$
=\lim _{x \rightarrow 4}\left(1-\frac{1}{\sqrt{x-4}}\right)=-\infty
$$

إنن f لا تَّبل الاشتقتاق عند 4 من اليمين.

- $\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4} \frac{\frac{x^{2}-3 x-6}{x-4}-4}{x-4}$

$$
\begin{aligned}
& \text {. } \left.D_{f^{\prime}}=\right] 0 ; 1[\cup] \mathbf{1} ;+\infty[\\
& f^{\prime}(x)=\frac{\frac{1}{2 \sqrt{x}}(x-1)-1(\sqrt{x}-4)}{(x-1)^{2}}=\frac{-x+8 \sqrt{x}-1}{2 \sqrt{x}(x-1)^{2}} \\
& f(x)=(\sqrt{x}-3)^{2}: \text { : } 7 \\
& \text {. } \boldsymbol{D}_{f}=\left[0 ;+\infty\left[; D_{f^{\prime}}=\right] 0 ;+\infty[\quad: \quad \text { ومنه }\right. \\
& f^{\prime}(x)=2 \times \frac{1}{2 \sqrt{x}}(\sqrt{x}-3)=\frac{\sqrt{x}-3}{\sqrt{x}} \\
& \text {. } f(x)=\sqrt{2 x-3}+x \quad: \quad \text { :دينا } \\
& D_{f}=\{x \in \mathbb{R}: 2 x-3 \geq 0\} \quad: \quad \text { ومنه } \\
& \text {. } \left.D_{f^{\prime}}=\right] \frac{3}{2} ;+\infty\left[\quad D_{f}=\left[\frac{3}{2} ;+\infty[: 0\right.\right. \\
& f^{\prime}(x)=\frac{2}{2 \sqrt{2 x-3}}+1=\frac{1+\sqrt{2 x-3}}{\sqrt{2 x-3}} \\
& f(x)=\frac{\sqrt{2 x-2}}{\sqrt{x+3}} \quad \text { : لاينا } \\
& D_{f}=\{x \in \mathbb{R}: 2 x-2 \geq 0 ; x+3>0\}: \text { ومنـ } \\
& \text {. } \left.D_{f}^{\prime}=\right] 1 ;+\infty\left[\quad D_{f}=[1 ;+\infty[\quad: \quad \text { ! }\right. \\
& f^{\prime}(x)=\frac{\frac{2}{2 \sqrt{2 x-2}} \times \sqrt{x+3}-\frac{1}{2 \sqrt{x+3}} \times \sqrt{2 x-2}}{x+3}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{-8 x}{\left(x^{2}-4\right)^{2}} \quad: D_{f}=D_{f^{\prime}}=\mathbb{R}-\{-2 ; 2\}: \text { ومنه }
$$

$$
f(x)=\left(\frac{3 x-1}{x+2}\right)^{2}
$$

$$
\text { ومنه : } D_{f}=D_{f^{\prime}}=\mathbb{R}-\{-2\} \quad \text {, }
$$

$$
f^{\prime}(x)=2 \times \frac{3(x+2)-1(3 x-1)}{(x+2)^{2}} \times\left(\frac{3 x-1}{x+2}\right)
$$

$$
f^{\prime}(x)=2 \times \frac{(7) \times(3 x-1)}{(x+2)^{3}}=\frac{14(3 x-1)}{(x+2)^{3}}
$$

$$
f(x)=\frac{\sqrt{x}-4}{x-1} \quad: \quad \text { (6) لدينا }
$$

$$
\text { . } D_{f}=\{x \in \mathbb{R}: x \geq 0 ; x-1 \neq 0\} \quad: \quad \text { ومنه }
$$

$$
\begin{aligned}
& f(x)=\frac{3}{x+1}-\frac{5}{x}+2 \quad: \quad \text { : } 2 \\
& \text { ومنه : } \boldsymbol{D}_{f}=\boldsymbol{D}_{f^{\prime}}=\mathbb{R}-\{-1 ; 0\} \text {. } \\
& f^{\prime}(x)=\frac{-3}{(x+1)^{2}}+\frac{5}{x^{2}} \\
& f(x)=\frac{4 x}{x^{2}-1}+5 x \\
& \text { ومنه: } D_{f}=D_{f^{\prime}}=\mathbb{R}-\{-1 ; 1\} \quad \text {, } \\
& f^{\prime}(x)=\frac{-4 x^{2}-4}{\left(x^{2}-1\right)^{2}}+5=\frac{5 x^{4}-14 x^{2}+1}{\left(x^{2}-1\right)^{2}} \\
& f(x)=\frac{x^{2}}{x^{2}-4} \quad \text { : لاينا } 4
\end{aligned}
$$

$$
D_{f}=D_{f^{\prime}}=\mathbb{R}
$$

: 12

$$
\begin{aligned}
& f^{\prime}(x)=4 \cos x \cdot \sin ^{3} x \\
& f(x)=\frac{\cos x}{\sin x-1} \quad: \quad \text { : } 13
\end{aligned}
$$

$$
D_{f}=\{x \in \mathbb{R}: \sin x-1 \neq 0\} \text { :ومنه }
$$

$$
x=\frac{\pi}{2}+2 k \pi ; k \in \mathbb{Z}: \text { وعايه } \sin x=1 \text { مغناه } \sin x-1=0
$$

$$
D_{f}=D_{f^{\prime}}=\mathbb{R}-\left\{\frac{\pi}{2}+2 \mathbf{k} \pi, \mathbf{k} \in \mathbb{Z}\right\} \quad:
$$

$$
f^{\prime}(x)=\frac{-\sin x(\sin x-1)-\cos x \cdot \cos x}{(\sin x-1)^{2}}
$$

$$
f^{\prime}(x)=\frac{-\sin ^{2} x+\sin x-\cos ^{2} x}{(\sin x-1)^{2}}=\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)+\sin x}{(\sin x-1)^{2}}
$$

$$
f^{\prime}(x)=\frac{-1+\sin x}{(\sin x-1)^{2}}=\frac{1}{\sin x-1}
$$

$$
f(x)=\sqrt{2 \sin ^{2} x+1} \quad \text { (14) لدينا }
$$

$$
\begin{gathered}
D_{f}=\left\{x \in \mathbb{R}: 2 \sin ^{2} x+1 \geq 0\right\}: \text { ومنه } \quad 2 \sin ^{2} x+1 \geq 0 \\
\sin ^{2} x \geq-\frac{1}{2} \quad: \quad \text { وهنا محقّ وهنه : } \quad \text { و } \quad \text { و } \quad=D_{f^{\prime}}=\mathbb{R} \quad
\end{gathered}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{4 \cos x \sin x}{2 \sqrt{2 \sin ^{2} x+1}}=\frac{2 \cos x \sin x}{\sqrt{2 \sin ^{2} x+1}} \\
& \qquad f(x)=\tan x-\sin x+1 \quad: \quad: \quad \text { : } 15 \\
& D_{f}=D_{f^{\prime}}=\{x \in \mathbb{R}: \cos x \neq 0\} \quad: \quad: \quad \text { ومنه }
\end{aligned}
$$

$f^{\prime}(x)=\frac{\frac{\sqrt{x+3}}{\sqrt{2 x-2}}-\frac{\sqrt{2 x-2}}{2 \sqrt{x+3}}}{x+3}$

$$
\begin{aligned}
f^{\prime}(x)=\frac{8}{2(x+3) \sqrt{2 x-2} \sqrt{x+3}} & : \text { ومنه } \\
f(x)=\sqrt{\frac{2 x-2}{x+3}} & : د \text { لدينا } 10
\end{aligned}
$$

$$
D_{f}=\left\{x \in \mathbb{R}: \frac{2 x-2}{x+3} \geq 0 ; x+3 \neq 0\right\}: \text { gمنه }
$$

$$
\left.D_{f}=\right]-\infty ;-3[\cup[1 ;+\infty[
$$

$$
\left.D_{f^{\prime}}=\right]-\infty ;-3[\cup] 1 ;+\infty[
$$

$$
f^{\prime}(x)=\frac{\frac{2(x+3)-1(2 x-2)}{(x+3)^{2}}}{2 \sqrt{\frac{2 x-2}{x+3}}}=\frac{\frac{8}{(x+3)^{2}}}{2 \sqrt{\frac{2 x-2}{x+3}}}
$$

$$
f^{\prime}(x)=\frac{4}{(x+3)^{2} \sqrt{\frac{2 x-2}{x+3}}}=: \text { ومنه }
$$

$$
f(x)=\cos \left(2 x-\frac{\pi}{4}\right)+\sin 2 x \quad: \quad \text { (11) }
$$

$$
\text { ومنه } \boldsymbol{D}_{f}=\boldsymbol{D}_{f^{\prime}}=\mathbb{R} \quad \text { g }
$$

$$
f^{\prime}(x)=2 \times\left[-\sin \left(2 x-\frac{\pi}{4}\right)\right]+2 \cos 2 x
$$

$$
f^{\prime}(x)=-2 \sin \left(2 x-\frac{\pi}{4}\right)+2 \cos 2 x \quad: \quad \text { ! }
$$

$$
\begin{aligned}
& f(0)=2(0)^{2}-4+4|0+3|=-4+12=8 \\
& -\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{2 x^{2}+4 x+8-8}{x}=\lim _{x \rightarrow 0} \frac{2 x^{2}+4 x}{x} \\
& =\lim _{x \rightarrow 0} \frac{2 x(x+2)}{x}=\lim _{x \rightarrow 0} 2(x+2)=4
\end{aligned}
$$

$$
\text { ومنه f تقبل الاشتقاق عند } 0 \text { حيث } 4 \text {. } f^{\prime}(0) \text {. }
$$

3) قابلية الاشتُقّق عند 3- :

$$
f(-3)=2(-3)^{2}-4+4|-3+3|=14
$$

$$
\text { - } \lim _{x \rightarrow-3} \frac{f(x)-f(-3)}{x+3}=\lim _{x \rightarrow-3} \frac{2 x^{2}-4 x-16-14}{x+3}
$$

$$
=\lim _{x \rightarrow-3} \frac{2 x^{2}-4 x-30}{x+3}=\lim _{x \rightarrow-3} \frac{(x+3)(2 x-10)}{x+3}=\lim _{x \rightarrow-3}(2 x-10)=-16
$$

- $\lim _{x \rightarrow-3} \frac{f(x)-f(-3)}{x+3}=\lim _{x \rightarrow-3} \frac{2 x^{2}+4 x+8-14}{x+3}=\lim _{x \rightarrow-3} \frac{2 x^{2}+4 x-6}{x+3}$

$$
=\lim _{x \rightarrow-3} \frac{(x+3)(2 x-2)}{x+3}=\lim _{x \rightarrow-3} 2 x-2=-8
$$

وعليهf لا تقّل الأشتقاق عثد 3-
تبسيط (f(x) :
$\mathbb{R}-\{-2\}$: معرف على $f(x)=\frac{\sqrt{x^{2}(x+2)^{2}}}{(x+2)(|x|+2)} \quad x \neq 2$ من اجل

$$
\text { . } D_{f}=\mathbb{R} \quad \text { كن : } f(-2)=\frac{1}{2} \text { ومنه }
$$

$$
f(x)=\frac{|x| \cdot|x+2|}{(x+2) \cdot(|x|+2)}
$$

$$
\begin{aligned}
x=\frac{\pi}{2}+k \pi & ; k \in \mathbb{Z}: \text { oles } \cos x=0 \\
D_{f}=D_{f^{\prime}}=\mathbb{R}- & \left\{x=\frac{\pi}{2}+k \pi ; \mathrm{k} \in \mathbb{Z}\right\}: \vdots \\
& f^{\prime}(x)=\frac{1}{\cos ^{2} x}-\cos x
\end{aligned}
$$

استنتّاج اتجاه تغير كل من الدالتين f f و f :
و [

x	$-\infty$	$+\infty$
$f^{\prime}(x)$		+
$f(x)$		

[1; $; 1+\infty$ [

x	$-\infty$	$+\infty$
$g^{\prime}(x)$		
$g(x)$		

$$
D_{f}=\mathbb{R}(1
$$

كتابة $f(x)$ دون رمز القيمة المطلقة :

$$
\left\{\begin{array}{l}
f(x)=2 x^{2}-4+4(x+3) ; x \geq-3 \\
f(x)=2 x^{2}-4-4(x+3) ; x \geq-3
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
f(x)=2 x^{2}+4 x+8 ; x \geq-3 \\
f(x)=2 x^{2}-4 x-16 ; x \geq-3
\end{array}\right.
$$

g ومنه
$f^{\prime}(x)=\frac{-1}{(x-1)^{2}} ; f^{\prime \prime}(x)=\frac{2}{(x-1)^{3}} \quad ; \quad f^{(3)}(x)=\frac{-6}{(x-1)^{4}}$

$$
\begin{aligned}
& f^{(3)}(x)=\frac{(-1)^{3} \times 3 \times 2 \times}{(x-1)^{4}} \\
= & \frac{(-1)^{4} \times 4 \times 3 \times 2 \times 1}{(x-1)^{5}}
\end{aligned}
$$

$$
f^{(4)}(x)=\frac{+24}{(x-1)^{5}}=\frac{(-1)^{4} \times 4 \times 3 \times 2 \times 1}{(x-1)^{5}}
$$

$$
f^{(n)}(x) \text { اسntile }
$$

$$
f^{(n)}(x)=\frac{(-1)^{n} \times n!}{(x-1)^{n+1}} \quad: \quad \text { نلاحظ أن }
$$

$$
: f^{(5)}(x) ; f^{(4)}(x) ; f^{(3)}(x) ; f^{\prime \prime}(x) ; f^{\prime}(x)
$$

$$
f^{\prime}(x)=\cos x=\sin \left(\frac{\pi}{2}+x\right)
$$

$$
f^{\prime \prime}(x)=-\sin x=\sin (\pi+x)
$$

$$
f^{\prime \prime}(x)=\sin \left(\frac{2 \pi}{2}+x\right)
$$

$f^{(3)}(x)=\cos x(\pi+x)=\sin \left(\frac{\pi}{2}+\pi+x\right)$

$$
f^{(3)}(x)=\sin \left(\frac{3 \pi}{2}+x\right)
$$

$f^{(4)}(x)=\cos \left(\frac{3 \pi}{2}+x\right)=\sin \left(\frac{\pi}{2}+\frac{3 \pi}{2}+x\right)$

$$
f^{(4)}(x)=\sin \left(\frac{4 \pi}{2}+x\right)
$$

x	$-\infty$	-2	0	
$\|x\|$	$-x$	$-x$	0	x
$\|x+2\|$	$-(x+2)$	0	$x+2$	$x+2$

$$
\left\{\begin{array}{l}
f(x)=\frac{-x[-(x+2)]}{(x+2)(-x+2)} ; x \leq-2 \\
f(x)=\frac{-x(x+2)}{(x+2)(-x+2)} ;-2<x \leq 0 \\
f(x)=\frac{x(x+2)}{(x+2)(x+2)} ; x \geq 0 \\
f(-2)=\frac{1}{2} \\
\left\{\begin{array}{l}
f(x)=\frac{x}{-x+2} ; x<-2 \\
f(x)=\frac{x}{x-2} ;-2<x \leq 0 \\
f(x)=\frac{x}{x+2} ; x \geq 0 \\
f(-2)=\frac{1}{2}
\end{array}\right. \\
\left\{\begin{array}{l}
f(x) \\
f(x)
\end{array}\right.
\end{array}\right.
$$

1) دراسة استمر ارية الدالة f عند 2- :
$\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \frac{x}{-x+2}=\frac{-1}{2} \underset{\substack{x \rightarrow-2}}{\lim _{x \rightarrow-2} f(x)=\lim _{\substack{x \rightarrow-2 \\ x \rightarrow-2}} \frac{x}{x-2}=\frac{1}{2}, ~(1)}$
بّن f لا تقبل نهاية عند 2- ومنه f غير مستمرة عند 2- .
2- قابلية الانشتُقاق عند 2- : بما أن f غير مستمرة عند 2- فبان f غير قابلة للاشتقاق عنـ 2-.

$$
\text { : } f^{(4)}(x) \text { : }
$$

2
 و عليه f متز ايدة تماما على [0; 0 [0 [

x	0	
$f^{\circ}(x)$		$+\infty$
$P^{\prime}(x)$		

: f^{\prime} در اسة إتجاه تغيز
$f^{\prime \prime}(x)=-\cos x+1$: $\quad f^{\prime}(x)=-\sin x+x$ $-1 \leq-\cos x \leq 1:$: لدينا : $1 \leq \cos x \leq 1 \leq$ و بالنتالي : $0 \leq 1-\cos x \leq 2$.

$-x$	$-\infty$	0	$+\infty$	
$f^{\prime} \cdot(x)$		+		+
$f 0(x)$				

لاينا : $f^{\prime}(x)=0$ عليه
$\left.f^{\prime}(x)>0: x \in\right] 0 ;+\infty[$ W
$\left.f^{\prime}(x)<0: x \in\right]-\infty ; 0[$ LU
$f^{(5)}(x)=\cos \left(\frac{4 \pi}{2}+x\right)$

$$
f^{(5)}(x)=\sin \left(\frac{\pi}{2}+\frac{4 \pi}{2}+x\right)=\sin \left(\frac{5 \pi}{2}+x\right)
$$

$$
f^{(n)}(x)=\sin \left(\frac{n \pi}{2}+x\right) \quad: \quad \text { :استنتاج: لدينا ممـا سبق }
$$

النتمرين 10 :

$$
f^{\prime \prime}(x)+4 f(x)-2=0 \text { : تبيان ان - }
$$

$$
f^{\prime}(x)=2 \cos x \cdot \sin x \quad \text { لدينا : ومنه } f(x)=\sin ^{2} \text { ونه }
$$

$$
f^{\prime \prime}(x)=2[-\sin x \cdot \sin x+\cos x \cdot \cos x] \quad: \text { وبالتالي }
$$

$$
=2\left(-\sin ^{2} x+\cos ^{2} x\right)
$$

$$
\begin{aligned}
f^{\prime \prime}(x)+4 f(x)-2 & =2\left(-\sin ^{2} x+\cos ^{2} x\right)+4 \sin ^{2} x-2: \\
& =2\left(\sin ^{2} x+\cos ^{2} x\right)-2=2-2=0
\end{aligned}
$$

\qquad
1 $f^{\prime \prime}(x)=2-\cos x$: لدينا : $1 \leq 2-\cos x \leq 3$: بما أن : $1 \leq-\cos x \leq 1 \leq$

$$
1 \leq f^{\prime}(x) \leq 3: \text { giod }
$$

وعليه:

x	0	$+\infty$	
$f^{\prime \prime}(x)$		+	
$f^{\prime}(x)$	0		

$$
x_{2}=\frac{2+\sqrt{12}}{-2}=-1-\sqrt{3}
$$

x	-2	$-1+\sqrt{3}$	2	
$f^{\prime}(x)$	+	0		

جدول التغيرات :

x	-2	$-1+\sqrt{3}$	2	
$f^{\prime}(x)$		+	0	-
$f(x)$		$f(-1+\sqrt{3})$		

$$
f(-1+\sqrt{3})=(-1+\sqrt{3}+4) \sqrt{4-(-1+\sqrt{3})^{2}}=(3+\sqrt{3}) \sqrt{2 \sqrt{3}}
$$

: (Δ) (2

$$
y=f^{\prime}\left(x_{0}\right) \times\left(x-x_{0}\right)+f\left(x_{0}\right)
$$

$$
x_{0}=0 \quad ; \quad f(0)=8 \quad ; \quad f^{\prime}(0)=2
$$

.

$$
y=2 x+8: 8 \text { و منه معالـة (}
$$

$$
\begin{aligned}
f(x)-y & =(x+4) \times \sqrt{4-x^{2}}-2(x+4) \\
& =(x+4)\left[\sqrt{4-x^{2}}-2\right]
\end{aligned}
$$

x	$-\infty$	0			$+\infty$
$f^{\prime}(x)$	-	0			
$f(x)$					

3 الاستختناج :
$f(x) \geq 0$: من جدول التثفيرات لدينا ومنه $\cos x-1+\frac{x^{2}}{2} \geq 0 \quad 1$ $\cos x \geq 1-\frac{x^{2}}{2}:$ وعليه
\qquad

1) در اسنةّ تُغير ات الدالـة f

$$
f(2)=0 \quad ; \quad f(-2)=0 \quad \text { : } 5
$$

$$
f^{\prime}(x)=1 \times \sqrt{4-x^{2}}+\frac{-2 x}{2 \sqrt{4-x^{2}}} \times(x+4)
$$

$$
f^{\prime}(x)=\sqrt{4-x^{2}}-\frac{x(x+4)}{\sqrt{4-x^{2}}}
$$

و منـه :

$$
=\frac{4-x^{2}-x^{2}-4 x}{\sqrt{4-x^{2}}}=\frac{-2 x^{2}-4 x+4}{\sqrt{4-x^{2}}}
$$

$$
\text { إشثارة المشتق هن إشارة: : 4x+4 } 4 \text { - }
$$

$$
\Delta^{\prime}=(-2)^{2}-(4)(-2)=4+8=12 \quad: ل د ي ن ا
$$

$$
x_{1}=\frac{2-\sqrt{12}}{-2}=\frac{2-2 \sqrt{3}}{-2}=-1+\sqrt{3}
$$

$(f \circ g)^{\prime}(x)=g^{\prime}(x) \times f^{\prime}[g(x)]$

$$
\begin{aligned}
& =\frac{1}{2 \sqrt{x}} \times \frac{1}{(\sqrt{x})^{2}+1} \\
& =\frac{1}{2 \sqrt{x} \cdot(x+1)}
\end{aligned}
$$

- $\left.D_{f}=\right]-\infty ;+\infty[$
- $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} x^{3}=-\infty$
- $\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} x^{3}=+\infty$
- $g^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)$

x	$-\infty$	-1	1	$+\infty$	
$g^{\prime}(x)$	+	0	-	0	+

جدول التغيرات :

x	$-\infty$	-1		1	$+\infty$	
$g^{\prime}(x)$		+	0	-	0	+
$g(x)$			- $^{-2}$			
	$-\infty$					+6

$$
g(-1)=-2 \quad ; \quad g(1)=-6
$$

2) تُبيان أن المعادلة لاينا g مستمرة في اللمجال

$$
\begin{aligned}
& =\frac{(x+4)\left[\sqrt{4-x^{2}}-2\right]\left[\sqrt{4-x^{2}}+2\right]}{\sqrt{4-x^{2}}+2} \\
& =\frac{(x+4)\left(4-x^{2}-4\right)}{\sqrt{4-x^{2}}+2}
\end{aligned}
$$

$$
f(x)-y=\frac{-x^{2}(x+4)}{\sqrt{4-x^{2}}+2} \quad: \quad \text { ب بالتالي }
$$

$$
\sqrt{4-x^{2}}+2>0, x^{2} \geq 0 \text { :بما أن }
$$

$$
\text { فإن إشارة } f(x)-y \text { تتعلق باششارة : (x+4) - }
$$

$$
\text { و هو سالب على المجال [2;2 } 2 \text { - }
$$

إلن ((() يقطع) في النقطّة ذات الفاصلة المعدومة و يكون تحت (C) .

$$
g^{\prime}(x)=-\sin x \text { :لدييا }
$$

$(f \circ g)^{\prime}(x)=g^{\prime}(x) \times f^{\prime}[g(x)]$

$$
(f o g)^{\prime}(x)=-\sin x \times \frac{1}{[g(x)]^{2}+1} \quad: \quad \text { g }
$$

$$
(f \circ g)^{\prime}(x)=\frac{-\sin x}{\cos ^{2} x+1} \quad \text { وبالتالي }
$$

$$
g^{\prime}(x)=5 \text { : لدينا : }
$$

$(f o g)^{\prime}(x)=g^{\prime}(x) \times f^{\prime}[g(x)]$

$$
\begin{aligned}
&=5 \times \frac{1}{[g(x)]^{2}+1}=\frac{5}{(5 x-3)^{2}+1} \\
& g^{\prime}(x)=\frac{1}{2 \sqrt{x}}: \text { :لدينا (3) }
\end{aligned}
$$

- $\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{x^{2}(x+2)}{x^{2}-1}=+\infty$

$$
\left\{\begin{array}{l}
x^{2}(x+2) \longrightarrow+1 \\
x^{2}-1 \longrightarrow 0
\end{array}\right. \text { : لا }
$$

- $\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{x^{2}(x+2)}{x^{2}-1}=-\infty$

$$
\left\{\begin{array}{l}
x^{2}(x+2) \longrightarrow 1 \\
x^{2}-1 \longrightarrow 0
\end{array}\right.
$$

- $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}(x+2)}{x^{2}-1}=-\infty$

$$
\left\{\begin{array}{l}
x^{2}(x+2) \longrightarrow 3 \\
x^{2}-1 \longrightarrow 0
\end{array}\right.
$$

- $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}(x+2)}{x^{2}-1}=+\infty$

$$
\left.\begin{array}{rl}
\left\{\begin{array}{l}
x^{2}(x+2) \longrightarrow \\
x^{2}-1 \\
f(x)
\end{array}\right. & =a \\
0 & 0
\end{array}\right\}
$$

: d , c, b , a a تعيين الأءدال

$$
\begin{aligned}
& g(2)=-2 ; g\left(\frac{5}{2}\right)=4,125 \\
& g(2) \times g\left(\frac{5}{2}\right)<0: \text { : } و \text { ونه }
\end{aligned}
$$

وباتثالي حسب نظرية القّمٍ المتوسطة يوجد عدد وحبر م حيث :

x	$-\infty$		α		$+\infty$
$g(x)$		-	0	+	

$$
D_{f}=\left\{x \in \mathbb{R}: x^{2}-1 \neq 0\right\}
$$

- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{x^{2}(x+2)}{x^{2}-1}$
$=\lim _{x \rightarrow-\infty} \frac{x^{3}}{x^{2}}=\lim _{x \rightarrow-\infty} x=-\infty$
- $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{x^{2}(x+2)}{x^{2}-1}$
$=\lim _{x \rightarrow+\infty} \frac{x^{3}}{x^{2}}=\lim _{x \rightarrow+\infty} x=+\infty$
إئارة :

x	$-\infty$	-1		1	$+\infty$
$x^{2}-1$	+	\oint	-		

$$
\begin{aligned}
& . g(\alpha)=0 \quad \alpha \in] 2 ; \frac{5}{2}[\\
& \text { : } \boldsymbol{g}(\boldsymbol{x}) \text { (استُتّاج إئارة }
\end{aligned}
$$

 5- تبيان أن (C) يقبل مسنقيمين مقارينين عصوديين : $\lim _{\substack{>\\ x \rightarrow-1}} f(x)=-\infty \quad, \quad \lim _{\substack{x \\ x \rightarrow-1}} f(x)=+\infty$

و عليه : $x=-1$ معادلة مستقيم مقارب عمودي .
$\lim _{\substack{x \\ x \rightarrow 1}} f(x)=+\infty \quad, \quad \lim _{\substack{<\\ x \rightarrow 1}} f(x)=-\infty$
و عليه : $x=1$ معدلة هستّقيم هقارب عمودي.
: x - تُبيان أن إشارة

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(3 x^{2}+4 x\right)\left(x^{2}-1\right)-2 x \cdot\left(x^{3}+2 x^{2}\right)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{x\left[(3 x+4)\left(x^{2}-1\right)-2\left(x^{3}+2 x^{2}\right)\right]}{\left(x^{2}-1\right)^{2}} \\
& =\frac{x\left(3 x^{3}-3 x+4 x^{2}-4-2 x^{3}-4 x^{2}\right)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{x\left(x^{3}-3 x-4\right)}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

بها أن : $f^{\prime}(x)$ فتان إشتارة $\left.x^{2}-1\right)^{2}>0$ بالعبارة :
$x \cdot g(x)$ ($x\left(x^{3}-3 x-4\right)$ وهنه إشثارة

| x | $-\infty$ | -1 | 0 | 1 | | α | $+\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | - | - | 0 | + | + | + | |
| $g(x)$ | - | - | - | - | 0 | + | |
| $f^{\prime}(x)$ | + | + | 0 | - | - | 0 | + |

$=\frac{a x^{3}+b x^{2}+(c-a) x-b+d}{x^{2}-1}$

$$
f(x)=\frac{x^{3}+2 x^{2}}{x^{2}-1} \quad: \quad \text { ن }
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
a=1 \\
b=2 \\
c=1 \\
d=2
\end{array} \quad: \quad \text { : } \quad \text { و } 1\right. \text { أنيه } \\
& \text { و } f(x)=x+2+\frac{x+2}{x^{2}-1} \quad: \text { بالتالي }
\end{aligned}
$$

3- تبيان أن (C) تقبل مستقيما مقاربا مائنلا :

$$
\begin{aligned}
& \lim _{|x| \rightarrow+\infty} \frac{x+2}{x^{2}-1}=0 \text { بما أن : } \\
& \text { فإن معادلة المستقيم المقارب (}) \text { (هي : } y=x+2=x . \\
& \text { 4- در اسة الوضعية النسبيةّ لـ ((C) و (C) : } \\
& f(x)-y=\frac{x+2}{x^{2}-1}
\end{aligned}
$$

الإشارة :

x	$-\infty$	-2		-1	1	
$x+2$	-	0	+		$+\infty$	
$x^{2}-1$	+		+	0	-	0
$f(x)-y$	-	0	+		+	

وع عيهه (() يقطع (C) في النقطة ذات الفاصلة 2-

$$
\begin{cases}f(x)=\frac{x^{2}-3 x}{x+1} \quad ; \quad x^{2}-3 x \geq 0 \\ f(x)=-\frac{x^{2}-3 x}{x+1} \quad ; \quad x^{2}-3 x \leq 0\end{cases}
$$

$$
\begin{cases}f(x)=\frac{x^{2}-3 x}{x+1} & ; x \in D_{1} \\ f(x)=\frac{-\left(x^{2}-3 x\right)}{x+1} & ; x \in D_{2}\end{cases}
$$

$$
\text { , } \left.\left.D_{1}=\right]-\infty ;-1[\cup]-1 ; 0\right] \cup[3 ;+\infty[: 1
$$

$$
\begin{aligned}
& D_{2}=[0 ; 3] \text { و كتابة (3) } \\
& \text { كثى الشكل : } f(x)
\end{aligned}
$$

Sine qua non باستعمال البرمجية

التمرين 16

1) مجموعة التّريف :
$\left.D_{f}=\right]-\infty ;-1[\cup]-1 ;+\infty[$
2) كتابة ($f(x)$ دون رمز القِيمة المطلقةّة :

$$
\begin{aligned}
& f(x)=a x+b+\frac{c}{x+1} \\
& \text { : } x \in D_{1} W \\
& =\frac{(a x+b)(x+1)+c}{x+1} \\
& =\frac{a x^{2}+a x+b x+b+c}{x+1} \\
& f(x)=\frac{a x^{2}+(a+b) x+b+c}{x+1}: \text { ومنه } \\
& \left\{\begin{array} { l }
{ a = 1 } \\
{ b = - 4 } \\
{ c = 4 }
\end{array} : \text { : أي } \quad \text { و } \quad \left\{\begin{array}{l}
a=1 \\
a+b=-3 \\
b+c=0
\end{array}\right.\right.
\end{aligned}
$$

$$
: \lim _{h \rightarrow 0} \frac{f(3+h)}{h}
$$

$$
f(x)=a x+b+\frac{c}{x+1} \quad: x \in D_{2} \text { w }
$$

$$
\begin{aligned}
& =\frac{(a x+b)(x+1)+c}{x+1} \\
& =\frac{a x^{2}+a x+b x+b+c}{x+1} \\
& \quad f(x)=\frac{a x^{2}+(a+b) x+b+c}{x+1}: \text { gمنـ) }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
a=-1 \\
b=4 \\
c=-4
\end{array} \quad: \quad\left\{\begin{array}{l}
a=-1 \\
a+b=+3 \\
b+c=0
\end{array}\right.\right.
$$

$$
\lim _{h \rightarrow 0} \frac{f(3+h)}{h}=\lim _{\substack{c \\ h \rightarrow 0}} \frac{-\frac{(3+h)^{2}-3(3+h)}{3+h+1}}{h}=\lim _{h \rightarrow 0}-\frac{h+3}{h+4}=-\frac{3}{4}
$$

$$
\begin{cases}f(x)=x-4+\frac{4}{x+1} & ; x \in D_{1} \\ f(x)=-x+4-\frac{4}{x+1} & ; x \in \mathbf{D}_{2}\end{cases}
$$

وعليه f غير قابلة للاشتقاق عند 3 .

$$
\text { : } \lim _{x \rightarrow 0} \frac{f(x)}{x} \text { حساب }
$$

6) دراسة تغيرات الدالة f . . $\left.\dot{D}_{f}=\right]-\infty ;-1[\cup]-1 ;+\infty[$
$\lim _{h \rightarrow 0} f(x)=\lim _{h \rightarrow 0}\left(x-4+\frac{4}{x+1}\right)=-\infty$
$\lim _{h \rightarrow+\infty} f(x)=\lim _{h \rightarrow+\infty}\left(x-4+\frac{4}{x+1}\right)=+\infty$
$\lim _{\substack{c \\ h \rightarrow-1}} f(x)=\lim _{\substack{c \\ h \rightarrow-1}}\left(x-4+\frac{4}{x+1}\right)=-\infty$
$\lim _{h \rightarrow-1} f(x)=\lim _{\substack{\rightarrow \\ h \rightarrow-1}}\left(x-4+\frac{4}{x+1}\right)=+\infty$

- $\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{x^{2}-3 x}{x+1}}{x}=\lim _{x \rightarrow 0}^{x \rightarrow 0} \frac{x(x-3)}{x(x+1)}$

$$
=\lim _{x \rightarrow 0} \frac{x-3}{x+1}=-3
$$

- $\lim _{\substack{\rightarrow \\ x \rightarrow 0}} \frac{f(x)}{x}=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} \frac{\frac{-\left(x^{2}-3 x\right)}{x+1}}{x}=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} \frac{-x(x-3)}{x(x+1)}$

$$
=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} \frac{-(x-3)}{x+1}=3
$$

تبيان ان (Δ) مستقيم مقارب ماله :

- $\lim _{|x| \rightarrow+\infty}[f(x)-(x-4)]=\lim _{|x| \rightarrow+\infty} \frac{4}{x+1}=0$

ومنه $4=x-4$ معالة المستقيم المقارب المانل (
8 انشاء (8

9) المناقشة البياتية :
$f(x)=\mathrm{m}$: $m=\frac{\left|x^{2}-3 x\right|}{x+1}:$ ومنه \mid. $\left|x^{2}-3 x\right|=\mathrm{m}(x+1)$

$f^{\prime}(x)=1-\frac{4}{(x+1)^{2}}=\frac{(x+1)^{2}-4}{(x+1)^{2}} \quad: x \in \mathrm{D}_{1}$ w.

$$
f^{\prime}(x)=\frac{[(x+1)-2][x+1+2]}{(x+1)^{2}}
$$

$$
f^{\prime}(x)=\frac{(x-1)(x+3)}{(x+1)^{2}} \quad \text { ومنه }
$$

x	$-\infty$	-3	-1		0	3	+
$f^{\prime}(x)$	+	0					

 ومتتاقصة تُماما على كل من المجالين]-1 ; 3-3

$$
f^{\prime}(x)=\frac{-(x-1)(x+3)}{(x+1)^{2}}
$$

$$
: x \in \mathrm{D}_{2} \text { w. }
$$

x	0		1		3
$f^{\prime}(x)$		+		0	-

وعليه f متزايدة تماما على المجال [1; 0 [0] .
و متناقصة تماما على المجال [3 1 1 1] . 1 .
جدول التُغيرات :

$$
f^{\prime}(x)=\frac{2(x+2)\left(x^{2}+x+1\right)}{(x+1)^{3}} \quad \text { وغيه : }
$$

3) در داسة تغيرات الالالةَ f :

حساب الثنهايات :
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} 2 x+3-\frac{1}{(x+1)^{2}}=-\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} 2 x+3-\frac{1}{(x+1)^{2}}=+\infty$
$\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} 2 x+3-\frac{1}{(x+1)^{2}}=-\infty$
$\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} 2 x+3-\frac{1}{(x+1)^{2}}=-\infty$
دراسة إشارة المششتق :
لاينا إشارة (

$$
. x+1, x+2, x^{2}+x+1
$$

$$
\text { ابشارة : } x^{2}+x+1
$$

. $x^{2}+x+1>0$: لينا : 0 : $\Delta=(1)^{2}-4$ (1) 1 : 1 : 1 :

x	$-\infty$	-2	-1	
$x+2$	-	0	+	+
$x^{2}+x+1$	+	+	+	
$(x+1)^{3}$	-	-	0	+
$f^{\prime}(x)$	+	-	+	

لمـا : m=1 . اللمعادلة حلين متمايزين : $m \in]$ 1; $;$ [$f(x)=1: m=1$: حل المعادلة من أجل -

$$
\begin{aligned}
& \text {. }\left|x^{2}-3 x\right|=x+1: \text { i }: \frac{\left|x^{2}-3 x\right|}{x+1}=1 \text { : } \\
& \left\{\begin{array}{l}
x^{2}-3 x=x+1 ; x \in D_{1} \\
-\left(x^{2}-3 x\right)=x+1 \quad ; x \in D_{1} \quad: \quad \text { وعيه }, ~
\end{array}\right.
\end{aligned}
$$

حل المعادلة : $x^{2}-4 x-1=0$: x^{2} : $x^{2}-3 x=x+1$:
$x_{1}=2-\sqrt{5} ; x_{2}=2+\sqrt{5} \quad$ g ونه $\quad \Delta^{\prime}=(-2)^{2}-(-1)(1)=5$
$-x^{2}+3 x-x-1=0 \quad: \quad$: $\left(x^{2}-3 x\right)=x+1$: 1 :
أي :

$$
S=\{2-\sqrt{5} ; 2+\sqrt{5} ; 1\}: \text { مجموعة حول المعادلة }
$$

التمرين 17
 $D_{f}=\{x \in \mathbb{R}: x+1 \neq 0\}$

$$
\begin{gathered}
\left.. D_{f}=\right]-\infty ;-1[\cup]-1 ;+\infty[\quad \text { : لاينا } \\
f^{\prime}(x)=\frac{2(x+1)\left(x^{2}+x+1\right)}{(x+1)^{3}} \quad \text { : تبيان أن : } \\
f^{\prime}(x)=2-\frac{-2(x+2)}{(x+1)^{4}}=\frac{2(x+1)^{3}+2}{(x+1)^{3}} \\
=\frac{2\left[(x+1)^{3}+1\right]}{(x+1)^{3}}=\frac{2\left(x^{3}+3 x^{2}+3 x+2\right)}{(x+1)^{3}}
\end{gathered}
$$

$f\left(\frac{-1}{4}\right)=\frac{5}{2}-\frac{10}{9}=\frac{13}{18} \quad: \quad$ و و م

$$
f\left(\frac{-3}{8}\right) \times f\left(\frac{-1}{4}\right)<0 \quad \text { وعليه }
$$

$f\left(x_{0}\right)=0$: بحيث $x_{0} \in\left[\frac{-3}{8} ; \frac{-1}{4}\right]$
6) كتابة معادلة المماس :

$$
\begin{aligned}
& y=f^{\prime}(0) \times(x-0)+f(0) \quad \text { لدينا : } \\
& f(0)=2 ; \quad f^{\prime}(0)=4 \text { : لكن } \\
& \text {. } y=4 x+2 \text { : }
\end{aligned}
$$

: (C) انشاء (
لاينا :

ووتناقصة تماما على [1-1 2-2-]

- جـول التُّيرات :

x	$-\infty$	-2	-1	
$f^{\prime}(x)$	+	+	+	
$f(x)$		$+-\infty$		

4) تبيان أن ((4) مستقمِم مقارب مائل :
$\lim _{|x| \rightarrow+\infty}[f(x)-(2 x+3)]=\lim _{|x| \rightarrow+\infty} \frac{-1}{(x+1)}=0$

5) تَبيان أن (C) يُطع محور الفو اصل :

في المجال
$f\left(\frac{-8}{3}\right)=2\left(\frac{-8}{3}\right)+3-\frac{1}{\left(\frac{-8}{3}+1\right)^{2}}$
$=\frac{-3}{4}+3-\frac{1}{\left(\frac{-8}{3}\right)^{2}}$
. $f\left(\frac{-8}{3}\right)=\frac{9}{4}-\frac{64}{25}=\frac{-31}{100}$ و منه
$f\left(\frac{-1}{4}\right)=2\left(\frac{-1}{4}\right)+3-\frac{1}{\left(\frac{-1}{4}+1\right)^{2}}=\frac{-1}{2}+3-\frac{1}{\left(\frac{3}{4}\right)^{2}}$:
(C) المستشقي الذي معادلته :

- $\lim _{x \rightarrow-\infty} f(x)=+\infty \quad$ - $\lim _{x \rightarrow+\infty} f(x)=+\infty \quad: \quad$ (3

4) هعادلة المستقيم المقارب الممائل :
 هي : $y=x-1$. البيان (C) يقع فوق المستقيم المقارب المائل . المستقيم المقارب المائل الثانتي يشمل النقطة (1) 1 (1 (A^{\prime} و ميله 1- . إذن معادلته هي: $y=-x+1$. البيان (C) يقع فوق المستّقيم المقارب المـائل .

$$
f(x)=\sqrt{x^{2}-2 x+2} \quad \text { البز هان الحسابي (II }
$$ مجموعة التّريف :

$$
\begin{gathered}
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \sqrt{x^{2}-2 x+2}=+\infty \\
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \sqrt{x^{2}-2 x+2}=+\infty \\
f^{\prime}(x)=\frac{2 x-2}{2 \sqrt{x^{2}-2 x+2}}=\frac{x-1}{\sqrt{x^{2}-2 x+2}}
\end{gathered}
$$

إشارة المشثتق :

$$
\text { . } f^{\prime}(x)=0 \quad: x=1 \text { ن اجل }
$$

. $1 ;+\infty[$ [

$$
\begin{aligned}
& D_{f}=\left\{x \in \mathbb{R}: x^{2}-2 x+2 \geq 0\right\} \quad: \quad \text { :لدينا } \\
& \text {. } x^{2}-2 x+2 \text { : ندرس إشارة } \\
& x^{2}-2 x+2>0 \text { : } \Delta^{\prime}=(-1)^{2}-2(1)=-1 \\
& D_{f}=\mathbb{R}: \text { : }
\end{aligned}
$$

8) تُعيين النقط من (C) التي احداثياها أعدادا صحيحة لتكن (C) إحداثياها صحيصا لدينا :

$$
\text { ومنه : } 2 x+3-\frac{1}{(x+1)^{2}}(x+1)^{2} \text { عدد صحيح و بالتالي } 1
$$

$$
\text { إذن : } x+1=-1 \text { و } \quad \text { وبالتالي : } \quad x+1=1)^{2}=1 \text { و } x+1=1
$$

$$
\text { . } x=-2 \quad \text { g } \quad x=0 \quad: \quad \text { i }
$$

إذن النقط التّي احداثياها صحيحة هي
9) المناقشاقة البيانية للمعادلة :
$2 x^{3}+(7-m) x^{2}+2(4-m) x+2-m: 1$:

$$
2 x^{3}+7 x^{2}-m x^{2}+8 x-2 m x+2-m=0
$$

$$
2 x^{3}+7 x^{2}+8 x+2=m x^{2}+2 m x+m
$$

وعنيه :

$$
2 x^{3}+7 x^{2}+8 x+2=m\left(x^{2}+2 x+1\right) \quad: \quad: \quad \text { geيd }
$$

$$
\frac{2 x^{3}+7 x^{2}+8 x+2}{(x+1)^{2}}=m \quad: \quad \text { g }
$$

$$
f(x)=\frac{2 x^{3}+7 x^{2}+8 x+2}{(x+1)^{2}}: \text { ي } f(x)=2 x+3-\frac{1}{(x+1)^{2}}: \text { ن. }
$$

$$
f(x)=m \quad \text { وعليه : }
$$

لما لما لما
\qquad

$$
D_{f}=\mathbb{R}
$$

الدالة f متتاقصشة تعاما على المجال [[1 ; م- [ومتّز ايدةٌ تماما على
$\lim _{x \rightarrow+\infty}[f(x)-x]=\lim _{x \rightarrow+\infty} \frac{x^{2}-2 x+2-x^{2}}{\sqrt{x^{2}\left(1-\frac{2}{x}+\frac{2}{x^{2}}\right)}+x}$

$$
=\lim _{x \rightarrow+\infty} \frac{x\left[-2+\frac{2}{x}\right]}{x\left[\sqrt{1-\frac{2}{x}+\frac{2}{x^{2}}}+1\right]}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{-2+\frac{2}{x}}{\sqrt{1-\frac{2}{x}+\frac{2}{x^{2}}}+1}=-1
$$

ومنه : $y=x-1$ معادلة مستققيم مقارب مائل عند + .

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{f(x)}{x} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-2 x+2}}{x} \\
& =\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(1-\frac{2}{x}+\frac{2}{x^{2}}\right)}}{x}
\end{aligned}
$$

$$
=\lim _{x \rightarrow-\infty} \frac{-x \sqrt{1-\frac{2}{x}+\frac{2}{x^{2}}}}{x}=\lim _{x \rightarrow-\infty}-\sqrt{1-\frac{2}{x}+\frac{2}{x^{2}}}=-1
$$

$\lim _{x \rightarrow-\infty}[f(x)+x]=\lim _{x \rightarrow-\infty} \sqrt{x^{2}-2 x+2}+x$

$$
\begin{aligned}
= & \lim _{x \rightarrow-\infty} \frac{\left[\sqrt{x^{2}-2 x+2}+x\right]\left[\sqrt{x^{2}-2 x+2}-x\right]}{\sqrt{x^{2}-2 x+2}-x} \\
& =\lim _{x \rightarrow-\infty} \frac{x^{2}-2 x+2-x^{2}}{\sqrt{x^{2}\left(1-\frac{2}{x}+\frac{2}{x^{2}}\right)}-x}
\end{aligned}
$$

من أجل
جدول التخغير ت :

x	$-\infty$	1	$+\infty$	
$f^{\prime}(x)$		-	0	+
$f(x)$				

تبيان أن المستقيم الأي معادلته $x=1$ محور تناظل : $y=f(x)=\sqrt{(x-1)^{2}+1}:$ لدينا

$$
y^{\prime}=\sqrt{x^{\prime 2}+1}:\left\{\begin{array}{l}
x-1=x^{\prime} \\
y=y^{\prime}
\end{array}:\right. \text { و بوض }
$$

$$
D_{g}=\mathbb{R} \quad \text { نضع : } \quad y^{\prime}=g\left(x^{\prime}\right): \text { منه }
$$

من اجل كل عدد حقيقي x و
 - معادلة المستقيم المقارب المائل :
$\begin{aligned} \lim _{x \rightarrow+\infty} \frac{f(x)}{x} & =\lim _{x \rightarrow+\infty} \frac{\sqrt{x^{2}-2 x+2}}{x} \\ & =\lim _{x \rightarrow+\infty} \frac{\sqrt{x^{2}\left(1-\frac{2}{x}+\frac{2}{x^{2}}\right)}}{x}\end{aligned}$

$$
=\lim _{x \rightarrow+\infty} \frac{x \sqrt{1-\frac{2}{x}+\frac{2}{x^{2}}}}{x}=\lim _{x \rightarrow+\infty} \sqrt{1-\frac{2}{x}+\frac{2}{x^{2}}}=1
$$

$\lim _{x \rightarrow+\infty}[f(x)-x]=\lim _{x \rightarrow+\infty} \sqrt{x^{2}-2 x+2}-x$

$$
=\lim _{x \rightarrow+\infty} \frac{\left[\sqrt{x^{2}-2 x+2}-x\right]\left[\sqrt{x^{2}-2 x+2}+x\right]}{\sqrt{x^{2}-2 x+2}+x}
$$

$$
\begin{aligned}
& f(x)=\mathrm{a} x+\mathrm{b}+\frac{\mathrm{c} x+\mathrm{d}}{(x-1)^{2}} \text {) تبيان أنه يمكن كتابة } f \text { على الشكل } \\
& f(x)=\frac{(\mathrm{a} x+\mathrm{b})(x-1)^{2}+\mathrm{c} x+\mathrm{d}}{(x-1)^{2}} \\
& \text { ! } \\
& =\frac{(a x+b)\left(x^{2}-2 x+1\right)+c x+d}{x^{2}-2 x+1} \\
& =\frac{a x^{3}-2 a x^{2}+a x+b x^{2}-2 b x+b+c x+d}{x^{2}-2 x+1} \\
& =\frac{a x^{3}+(-2 a+b) x^{2}+(a-2 b+c) x+b+d}{x^{2}-2 x+1} \\
& \left\{\begin{array}{l}
a=1 \\
b=-2 \\
c=3 \\
d=-2
\end{array}: \begin{array}{l}
\text { أي } \\
\text { أنيه } \\
\text { أيه }
\end{array}\right. \\
& \text {. } f(x)=x-2+\frac{3 x-2}{(x-1)^{2}} \quad: \text { ومنه } \\
& \text { 3) دراسة تغيرات الدالةّ f }
\end{aligned}
$$

$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{x^{3}-4 x^{2}+8 x-4}{x^{2}-2 x+1}$
$=\lim _{x \rightarrow-\infty} \frac{x^{3}}{x^{2}}=\lim _{x \rightarrow-\infty} x=-\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{x^{3}}{x^{2}}=\lim _{x \rightarrow+\infty} x=+\infty$
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}\left(x-2+\frac{3 x-2}{(x-1)^{2}}\right)=+\infty$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}[f(x)+x] & =\lim _{x \rightarrow-\infty} \frac{x\left[-2+\frac{2}{x}\right]}{x\left[-\sqrt{1-\frac{2}{x}+\frac{2}{x^{2}}}-1\right]} \\
& =\lim _{x \rightarrow+\infty} \frac{-2+\frac{2}{x}}{-\sqrt{1-\frac{2}{x}+\frac{2}{x^{2}}}-1}=1
\end{aligned}
$$

$$
\text { ومنه : } 1 \text { م } y=-x+1 \text { معادلة مستقيم مقارب مائل عند م - . }
$$

التّمرين 19 :

$$
\begin{aligned}
& f^{\prime}(x)=\frac{x^{2}(x-3)}{(x-1)^{3}} \\
& f^{\prime}(x)=\frac{\left(3 x^{2}-8 x+8\right)\left(x^{2}-2 x+1\right)-(2 x-2)\left(x^{3}-4 x^{2}+8 x-4\right)}{\left(x^{2}-2 x+1\right)^{2}} \\
&=\frac{\left(3 x^{2}-8 x+8\right)(x-1)^{2}-2(x-1)\left(x^{3}-4 x^{2}+8 x-4\right)}{\left[(x+1)^{2}\right]^{2}} \\
&=\frac{(x-1)\left[\left(3 x^{2}-8 x+8\right)(x-1)-2\left(x^{3}-4 x^{2}+8 x-4\right)\right]}{(x+1)^{4}} \\
&=\frac{3 x^{3}-3 x^{2}-8 x^{2}+8 x+8 x-8-2 x^{3}+8 x^{2}-16 x+8}{(x-1)^{3}} \\
&=\frac{x^{3}-3 x^{2}}{(x+1)^{3}}=\frac{x^{2}(x-3)}{(x+1)^{3}}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{x^{2}(x-3)}{(x+1)^{3}} \quad: \quad \text { وعيه }
$$

x	$-\infty$	1		$\frac{3}{2}$	$+\infty$
$f(x)-y$	-	-	0	+	

 [$\frac{3}{2} ;+\infty[$ (C) يقطع فوق (, $\frac{3}{2}$, يقطع (C) في النقطة ذات الفاصلة

5 (5 تبيان وجود
في المجال

$$
\begin{aligned}
f\left(\frac{2}{3}\right) & =\frac{2}{3}-2+\frac{3\left(\frac{2}{3}\right)-2}{\left(\frac{2}{3}-1\right)^{2}}=\frac{-4}{3}+0=\frac{-4}{3}: \text { ولدينا } \\
f\left(\frac{3}{4}\right) & =\frac{3}{4}-2+\frac{3\left(\frac{3}{4}\right)-2}{\left(\frac{3}{4}-1\right)^{2}}=\frac{-5}{4}+\frac{\frac{1}{4}}{\frac{1}{6}} \\
& =\frac{-5}{4}+\frac{1}{4} \times 16=\frac{-5}{4}+4=\frac{11}{4} \\
& . f\left(\frac{2}{3}\right) \times f\left(\frac{3}{4}\right)<0: 0
\end{aligned}
$$

وحسب نظرية القيم المتوسطة يوجد عدد وحيد

$$
f(\alpha)=0, \alpha \in] \frac{2}{3} ; \frac{3}{4}[\text { حيث }
$$

6) - معاددلة المماس :

$$
\begin{aligned}
& y=f^{\prime}(2) \times(x-2)+f(2) \\
& f(2)=4 \quad ; \quad f^{\prime}(2)=-4 \quad \text { : حث }
\end{aligned}
$$

$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}\left(x-2+\frac{3 x-2}{(x-1)^{2}}\right)=+\infty$

$$
f^{\prime}(x)=\frac{x^{2}(x-3)}{(x-1)^{2}} \quad \text { ابشارة المشتّق }
$$

x	$-\infty$	0	$\mathbf{1}$			$\mathbf{3}$		$+\infty$
x^{2}	+	0	+	+	+			
$x-3$	-	-	-	0	+			
$(x-1)^{3}$	-	-	0	+	+			
$f^{\prime}(x)$	+	+		-	+			

4) تبيان أن (C) يقبل مستّقيمين مقاربين : $\lim _{x \rightarrow 1} f(x)=+\infty$ لاينا :
وعليه : $x=1$ معادلة مستقيم مقارب عمودي
$\lim _{|x| \rightarrow+\infty}[f(x)-(x-2)]=\lim _{|x| \rightarrow+\infty} \frac{3 x-2}{(x-1)^{2}}=0 \quad: \quad$ ولدينا

$$
\left.f(x)-\mathrm{y}=\frac{3 x-2}{(x-1)^{2}} \quad: \text { الوضعية النسبيةد ((() و }\right) \text { (}
$$

 . : D_{g}

$$
D_{g}=\{x \in \mathbb{R}:|x|-1 \neq 0\} \text {, لدنا : }
$$

$$
g(-x)=g(x) \quad: \quad \text { : } g(-x)=|-x|-2+\frac{3|-x|-2}{(|x|-1)^{2}}
$$

ابنَ
:

$$
\begin{cases}g(x)=x-2+\frac{3 x-2}{(x-1)^{2}} & ; x \geq 0 \\ g(x)=-x-2+\frac{-3 x-2}{(-x-1)^{2}} & ; x \leq 0\end{cases}
$$

$$
g(x)=f(x): x \in\left[0 ; 1[\cup] ;+\infty\left[\omega \omega^{\circ} \mid\right]\right.
$$

 بالنسبة لكحور التّرآتيب.

$$
\begin{aligned}
& \text {. } D_{g}=\mathbb{R}-\{-1 ; 1\} \text { : }
\end{aligned}
$$

7) المناقشة البيانية للمعادلة :

$$
f(x)=2 \mathrm{~m}
$$

$$
f(x)=\alpha: \text { نجـ } m=\frac{\alpha}{2} \text { بوضع } 2 m=\alpha \text { أي }
$$

$$
\text { لما } m=-2 \quad \alpha=-4 \quad \text { المعادلة حل مضاعف . }
$$

$$
\begin{aligned}
& y=-4(x-2)+4 \quad \text { ومنه } \\
& \text { و و بالتالي : } y=-4 x+12 \text {. } \\
& \text { : }
\end{aligned}
$$

الاالة المعرفة بـ		ملاحظات
$\begin{gathered} f(x)=x^{n} \\ n \in \mathbb{Q}-\{-1\} \end{gathered}$	$g(x)=\frac{x^{n+1}}{n+1}+C$	C
$f(x)=\frac{1}{x^{n}} ; \mathrm{n} \in \mathbb{N}-\{1\}$	$g(x)=\frac{-1}{(n-1) x^{n-1}}+\mathrm{c}$	$x \neq 0$
$f(x)=\frac{1}{\sqrt{x}} ; x \in I$	$g(x)=2 \sqrt{x}+C$	$\begin{array}{r} x>0 \\ x \in I \end{array}$
2 $f(x)=\sin x$	$g(x)=-\cos x+C$	
$f(x)=\cos x$	$g(x)=\sin x+C$	
$f(x)=\frac{1}{\cos ^{2} x} ; x \in I$	$g(x)=\tan x+C$	$\cos x \neq 0 ; x \in I$
$f^{\prime} f^{n}$	$\frac{f^{n+1}}{n+1}$	
$\frac{f^{\prime}(x)}{f^{\prime}(x)} ; x \in I$	$\frac{-1}{(n-1) f^{n-1}(x)}+C$	$\begin{gathered} f(x) \neq 0 \\ x \in I \end{gathered}$
$\frac{f^{\prime}(x)}{2 \sqrt{f(x)}} ; x \in I$	$\sqrt{f(x)}+C$	$\begin{gathered} f(x)>0 \\ x \in I \end{gathered}$

4- الدو ال الأصلية لدالة

تعريف :

لتكن f دالة معرفة على مجال I . نسمي دالة أصلية للالة f f على I I كل دالة F تقبل الاشتقاق على . $\mathrm{F}^{\prime}(x)=f(x)$: بحيث من أجل كل قيمة لـ x من I فان I I مثّال :
$\mathrm{F}: x \mapsto \sqrt{x}:$: $f: x \mapsto \frac{1}{2 \sqrt{x}}$ هي دالة أصلية للا الة

$$
\mathrm{F}^{\prime}(x)=\frac{1}{2 \sqrt{x}}=f(x): \text { y }
$$

مبرهنة :
كل دالة مستمرة على هجال I تقبل دوال أصلية على I I
خاصية 1 :
لتكن F دالة أصلية لدالة f شلى مجال I
. f
-

$$
\begin{aligned}
& \text {. } \mathrm{G}(x)=\mathrm{F}(x)+k \text { قيم } \mathrm{G} \text { قَان } \\
& \text { خاصية } 2 \text { : }
\end{aligned}
$$

. I

ـ عمليات على الدو ال الأصلية :
ليكن I مجال من I و x متغير حقيقي .

$$
\begin{array}{cl}
f(x)=\frac{x \sqrt{x}+4 \sqrt{x}-2}{2(x+2) \sqrt{x} \sqrt{x+2}} & F(x)=\frac{x-\sqrt{x}}{\sqrt{x+2}}(4 \\
f(x)=\frac{-3 x^{2}-2 x+3}{\left(x^{2}+1\right)^{2}} & F(x)=\frac{-x^{2}+3 x}{x^{2}+1}(5 \\
f(x)=\frac{3 x+1}{2 x \sqrt{x}} & F(x)=\frac{3 x-1}{\sqrt{x}}
\end{array}
$$

التّمرين 1 :
ضع العلامة ل أماما كل جملة صحيحة و العلامة × أماما كل جملة خاطثة. 1) إذا كان من الجل كل عدد حقيقّي x من المجال I I الدالتان f f و f متساويتان .
2) توجد دالة مستمرة على مجال I ول اتقّبل أية دالة أصلية على II .
3) كل دالة كثيرة حدود تقبل مالا نهاية من الاو الل الأصلية. 4) إذا كانت F وH دو دلتان أصليتان لكل من الدالتين hو فو فإن . $f+$ h h دالة F + H . λf (6 دالة أصلية للالة $f \times h$ h

$$
I=\mathbb{R}_{-} \quad, \quad f(x)=\frac{x^{5}+5 x^{4}-3 x^{2}}{x^{2}}
$$

$$
I=\mathbb{R} \quad, \quad f(x)=\left(x^{3}+5\right)^{2}
$$

$$
\mathrm{I}=\mathbb{R} \quad, \quad f(x)=\left(x^{3}-5\right)^{3}
$$

$$
I=\mathbb{R} \quad, \quad f(x)=\cos x-3 \sin x
$$

$$
I \doteq \mathbb{R}, \quad f(x)=x^{3}+4 \cos x
$$ التُمرين 4

.

$$
\begin{gathered}
. \mathrm{I}=\mathbb{R} ; \quad f(x)=(x+1)^{10} \\
. \mathrm{I}=\mathbb{R} ; f(x)=\mathrm{x}\left(x^{2}-5\right)^{6} \\
\mathrm{I}=]-\infty ; \mathbb{1}\left[\quad ; f(x)=\frac{1}{(x-1)^{4}}\right. \\
. \mathrm{I}=\mathbb{R} ; \quad f(x)=\frac{\mathrm{x}}{\left(x^{2}+1\right)^{3}} \\
. \mathrm{I}=\mathbb{R} \quad ; \quad f(x)=(4 x+5)^{4}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{I}=] \frac{\pi}{2} ; \frac{\pi}{2}\left[, \mathrm{y}_{0}=1, x_{0}=0, f(x)=\frac{-\sin x}{\cos ^{3} x}(7\right. \\
& I=\mathbb{R}, y_{0}=\frac{1}{2}, x_{0}=\frac{\pi}{2}, f(x)=\frac{\sin 2 x}{2 \sqrt{1+\sin ^{2} x}}(8 \\
& \text { التّمرين } 7 \text { : } \\
& \text { : F } \\
& f(x)=\frac{x^{2}+6 x}{\left(x^{2}+6 x+18\right)^{2}} \quad, \quad F(x)=\frac{\alpha x+\beta}{x^{2}+6 x+18} \\
& \text { حيث } \alpha \text {, } \beta \text { ر عددان حقيقيان. }
\end{aligned}
$$

 الدالة الالصلية للالة $f=0$ و و الثي تأخذ اللقيمة 2 من الجل

التمرين 8 :

$f(x)=\cos ^{2} x$
$f(x)=\sin ^{3} x$

$$
f(x)=\cos ^{2}\left(2 x+\frac{\pi}{2}\right)
$$

$f(x)=\sin 3 x \cos 5 x(6$

$$
f(x)=\sin x \cdot \cos ^{2} x
$$

$$
\text { . } f(x)=\frac{-2 x+1}{(x+2)^{3}} \text { : دالة معرفة بالعبارة } f
$$

. $\mathbb{R}-\{-2\}$ (1) بين أنه من أجل كل عدد حقيقي x من

$$
f(x)=\frac{\alpha}{(x+2)^{2}}+\frac{\beta}{(x+2)^{3}} \text { : فان }
$$

حيث ه و β عددان حقيقيان يطثب تييينهما .
 3) استتّتج الدالة الأصلية

$$
\begin{array}{r}
. \mathrm{I}=] 2 ;+\infty\left[\quad ; \quad f(x)=\frac{1}{\sqrt{x-2}}(6\right. \\
. \mathrm{I}=\mathbb{R} ; f(x)=\frac{2 x+2}{\sqrt{x^{2}+2 x+5}}(7 \\
. \mathrm{I}=\mathbb{R} ; \quad f(x)=\cos \left(2 x-\frac{\pi}{6}\right)(8 \\
. \mathrm{I}=\mathbb{R} ; f(x)=\sin (-x+\pi)(9 \\
. I=\mathbb{R} ; f(x)=\frac{1}{2} \sin \left(\pi x+\frac{\pi}{2}\right)-\cos \left(\frac{1}{2} x+\frac{\pi}{3}\right)(10
\end{array}
$$

عين اللالة الأصلية F للادلة f و التي تتعدم عند 2 مع تعيين اللمجال الذي تمت فيه اللدر اسة

$$
\begin{array}{ll}
f(x)=(-x+3)^{4} \\
f(x)=\frac{1}{2 \sqrt{x-1}}(4 & f(x)=-4 x^{4}+2 x^{2} \\
\left(x^{2}+3 x+8\right)^{2}
\end{array}
$$

$$
\begin{array}{ll}
f(x)=\frac{1}{2 \sqrt{x-1}}(4 & f(x)=\frac{2 x+}{\left(x^{2}+3 x\right.} \\
f(x)=2 x-\frac{1}{\sqrt{x}}(6 & f(x)=\sin \frac{\pi x}{8}
\end{array}
$$

$$
\begin{aligned}
& I I=\mathbb{R}, y_{0}=2, x_{0}=1, f(x)=x^{2}-4 \\
& I=\mathbb{R}, y_{0}=1, x_{0}=-1, f(x)=(x+3)^{2}
\end{aligned}
$$

$$
\mathrm{I}=] 1 ;+\infty\left[, y_{0}=-2, x_{0}=2, f(x)=\frac{1}{(x-1)^{2}}\right.
$$

$$
I=] 0 ;+\infty\left[, y_{0}=3, x_{0}=1 \quad, f(x)=2 x-\frac{1}{x^{2}}\right.
$$

$$
I=\mathbb{R}, y_{0}=1, x_{0}=0, f(x)=\frac{2 x}{\sqrt{x^{2}+1}}(5
$$

$$
I=\mathbb{R}, \mathrm{y}_{0}=\frac{\sqrt{3}}{2}, x_{0}=\frac{\pi}{3}, f(x)=\cos 2 x-\frac{1}{2} \sin x
$$

$. \mathrm{F}^{\prime}(x)=4 x^{3}-15 x \quad, \quad \mathrm{I}=\mathbb{R}: ل \operatorname{F}(x)=x^{4}-5 x^{3}+7$

$$
D_{F}=\mathbb{R}-\{-4\}, \mathrm{F}(x)=\frac{2 x}{x+4}
$$

$$
\text { ومنه } I=]-4 ;+\infty[\quad I=]-\infty ;-4\left[\begin{array}{ll}
\\
\end{array}\right.
$$

$$
\mathrm{F}^{\prime}(x)=\frac{8}{(x+4)^{2}}: \quad \mathrm{F}^{\prime}(x)=\frac{2(x+4)-1(2 x)}{(x+4)^{2}}
$$

$D_{F}=\{x \in \mathbb{R}: x \geq 0, x+2>0\} . \mathrm{F}(x)=\frac{x-\sqrt{x}}{\sqrt{x+2}}$

$$
. I=] 0 ;+\infty\left[: ~: D_{F}=[0 ;+\infty[\right.
$$

$\mathrm{F}^{\prime}(x)=\frac{\left(1-\frac{1}{2 \sqrt{x}}\right) \sqrt{x+2}-\frac{1}{2 \sqrt{x+2}} \times(x-\sqrt{x})}{(\sqrt{x+2})^{2}}$

$$
\mathrm{F}^{\prime}(x)=\frac{\frac{(\sqrt{x+2})^{2} \cdot(2 \sqrt{x}-1)-\sqrt{x}(x-\sqrt{x})}{2 \sqrt{x} \cdot \sqrt{x+2}}}{x+2}
$$

$$
\mathrm{F}^{\prime}(x)=\frac{(x+2)(2 \sqrt{x}-1)-x \sqrt{x}+x}{2(x+2) \sqrt{x} \sqrt{x+2}}
$$

$$
\mathrm{F}^{\prime}(x)=\frac{2 x \sqrt{x}-x+4 \sqrt{x}-2-x \sqrt{x}+x}{2(x+2) \sqrt{x} \sqrt{x+2}}
$$

$$
\mathrm{F}^{\prime}(x)=\frac{x \sqrt{x}+4 \sqrt{x}-2}{2(x+2) \sqrt{x} \sqrt{x+2}}
$$

لتكن A(x) مساحة المتلث المطون.

$$
\text { 1) كتب (f) } f(x \text { بدلهة } x .
$$

A(1 (1 (
3) احسب (

\square (4
\square (8 \square (3 (7
 $(2$
$(6$

\qquad

$$
\begin{aligned}
& f(x)=\frac{1}{x^{2}}-2 \times \frac{1}{2 \sqrt{x}} \quad: \quad f(x)=\frac{1}{x^{2}}-\frac{1}{\sqrt{x}} \text { (3 } \\
& \text {. } \mathrm{F}(x)=\frac{-1}{x}-2 \sqrt{x} \text { بالتّالي } \\
& f(x)=\frac{x^{5}}{x^{2}}-\frac{5 x^{4}}{x^{2}}-\frac{3 x^{2}}{x^{2}}: \text { : } f(x)=\frac{x^{5}+5 x^{4}-3 x^{2}}{x^{2}} \\
& f(x)=x^{3}+5 x^{2}-3: \text { وبالتالي } \\
& \mathrm{F}(x)=\frac{x^{4}}{4}-\frac{5}{3} x^{3}-3 x+\mathrm{k}: \text { : } \\
& \text {. } f(x)=x^{6}+10 x^{3}+25 \quad \text { وعليه } f(x)=\left(x^{3}+5\right)^{2} \quad \text { (5 } \\
& \text {. } \mathrm{F}(x)=\frac{x^{7}}{7}-\frac{5 x^{4}}{2}+25 x+k \quad: \quad \text { بالتالي } \\
& f(x)=\left(x^{2}-5\right)^{3} \\
& \begin{array}{r}
f(x)=\left(x^{2}\right)^{3}-3\left(x^{2}\right)^{2} \times 5+3\left(x^{2}\right)(5)^{2}-(5)^{3}: \text { : } \quad \text { g } \\
f(x)=x^{6}-15 x^{4}+75 x^{2}-125 \quad: \text { ن) }
\end{array} \\
& \text {. } \mathbf{F}(x)=\frac{x^{7}}{7}-3 x^{5}+25 x^{3}-125 x+k: \text { بالتالي } \\
& \text {. } \mathrm{F}(x)=\sin x+3 \cos x+\mathrm{k}: \quad f(x)=\cos x-3 \sin x \\
& \mathrm{~F}(x)=\frac{x^{3}}{3}+4 \sin x+\mathrm{k} \quad f(x)=x^{2}+4 \cos x \\
& \text { - } f(x)=1 \times(x+1)^{10}: \quad f(x)=(x+1)^{10}
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } h(x)=x+1 \text { ث } F(x)=\frac{\left[(h(x)]^{11}\right.}{11}
\end{aligned}
$$

$$
D_{F}=\mathbb{R} \quad, \quad \mathrm{F}(x)=\frac{-x^{2}+3 x}{x^{2}+1}
$$

$\mathrm{F}^{\prime}(x)=\frac{(-2 x+3)\left(x^{2}+1\right)-2 x\left(-x^{2}+3 x\right)}{\left(x^{2}+1\right)^{2}}$
و منه: : I =
$\mathrm{F}^{\prime}(x)=\frac{-2 x^{3}-2 x+3 x^{2}+3+2 x^{3}-6 x^{2}}{\left(x^{2}+1\right)^{2}}$

$$
F^{\prime}(x)=\frac{-3 x^{2}-2 x+3}{\left(x^{2}+1\right)^{2}}: \text { وعليه }
$$

و بالتالي :

$$
F(x)=\frac{3 x-1}{\sqrt{x}}
$$

$D_{F}=\{x \in \mathbb{R}: x>0\}$
$\mathrm{I}=] 0 ;+\infty\left[\right.$ و و و بنه : $\quad D_{F}=\mathbb{R}_{+}^{*}$
$\mathrm{F}^{\prime}(x)=\frac{3 \sqrt{x}-\frac{1}{2 \sqrt{x}} \cdot(3 x-1)}{(\sqrt{x})^{2}}$
$F^{\prime}(x)=\frac{\frac{6 x-3 x+1}{2 \sqrt{x}}}{x}$
و منه :

$$
\mathrm{F}(x)=\frac{x^{4}}{4}-\frac{5 x^{2}}{2}+2 x+\mathrm{k}, f(x)=x^{3}-5 x+2
$$

$$
\mathrm{F}(x)=\frac{-1}{x^{2}}+\mathrm{k}: \operatorname{gos}(x)=\frac{2}{x^{3}}
$$

وعليه : k : k : $\mathrm{F}(x)=\frac{1}{20}(4 x+5)^{5}+k$ حقَقي . $f(x)=2 \times \frac{1}{2 \sqrt{x-2}}: \quad f(x)=\frac{1}{\sqrt{x-2}}$ $h(x)=x-2 \quad: \quad \mathrm{f}(\mathrm{x})=2 \times \frac{h^{\prime}(x)}{2 \sqrt{h(x)}}:$ ح عليه : $f(x)$ من الشكّل

$$
\text { و بالتالي : } \mathrm{F}(x)=2 \sqrt{h(x)}+k
$$

إذن : k ! k ثابت حقيقي.

$$
f(x)=2 \times \frac{2 x+2}{2 \sqrt{x^{2}+2 x+5}}: \operatorname{sing} f(x)=\frac{2 x+2}{\sqrt{x^{2}+2 x+5}}
$$

$$
h(x)=x^{2}+2 x+5: \quad \mathrm{f}(\mathrm{x})=2 \times \frac{h^{\prime}(x)}{2 \sqrt{h(x)}}: \text { وهي من الشكن } .
$$

$$
\text { و بالتالي : } \mathrm{F}(x)=2 \sqrt{x^{2}+2 x+5}+k: \text { : } \mathrm{F}(x)=2 \sqrt{h(x)}+k \text {) }
$$

$$
f(x)=\cos \left(2 x-\frac{\pi}{6}\right)(8
$$

$$
F(x)=\frac{1}{2} \times \sin \left(2 x-\frac{\pi}{6}\right)+k
$$

$$
f(x)=\sin (-x+\pi)
$$

$$
\mathrm{F}(x)=\cos (-x+\pi)+k: \text {. }
$$

$$
f(x)=\frac{1}{2} \sin \left(\pi x+\frac{\pi}{2}\right)-\cos \left(\frac{1}{2} x+\frac{\pi}{3}\right)
$$

$$
F(x)=\frac{1}{2} \times\left(\frac{-1}{\pi}\right) \cos \left(\pi x+\frac{\pi}{2}\right)-\frac{1}{\frac{1}{2}} \sin \left(\frac{1}{2} x+\frac{\pi}{3}\right)+k: d i n
$$

$$
\mathrm{F}(x)=\frac{-1}{2 \pi} \cos \left(\pi x+\frac{\pi}{2}\right)-2 \sin \left(\frac{1}{2} x+\frac{\pi}{3}\right)+
$$

، $f(x)=-4 x^{4}+2 x^{2}$ (

$$
f(x)=\frac{1}{2} \times 2 x \cdot\left(x^{2}-5\right)^{6} \quad: \quad f(x)=x\left(x^{2}-5\right)^{6}(2
$$

$$
\text { وبالتالي } f(x)=\frac{1}{2} h^{\prime}(x) \times[h(x)]^{6}: \text { : الثشكل }
$$

$$
\text { حيث : } \mathrm{F}(x)=\frac{1}{2} \frac{[h(x)]^{7}}{7}+k \quad: \text { : } 1 \cdot h(x)=x^{2}-5 \text {. }
$$

$$
\text { IJ } \mathrm{F}(x)=\frac{1}{14}\left(x^{2}-5\right)^{7}+\mathrm{k} \text {) }
$$

: $\frac{h^{\prime}(x)}{[h(x)]^{4}}:$: $\quad f(x)=\frac{1}{(x-1)^{4}}$

$$
\mathrm{F}(x)=\frac{-1}{3[h(x)]^{3}}+k \quad: \quad \text { : } h(x)=x-1
$$

وبالتالي : k : $\mathrm{F}(x)=\frac{-1}{3(x-1)^{3}}+k$ ثابت حقيقي .

$$
f(x)=\frac{1}{2} \times \frac{2 x}{\left(x^{2}+1\right)^{3}}: \int \quad f(x)=\frac{x}{\left(x^{2}+1\right)^{3}}
$$

$$
h(x)=x^{2}+1: \text { حيث } \mathrm{f}(\mathrm{x})=\frac{1}{2} \times \frac{h^{\prime}(x)}{[h(x)]^{3}}: \text { وعليه } f(\mathrm{H} \text {) }
$$

$$
\text { . } \mathrm{F}(x)=\frac{1}{2} \times \frac{-1}{2\left(x^{2}+1\right)^{2}}+k: \text { بالتالي }
$$

$$
\text { و بالتالي : } k: F(x)=\frac{-1}{4\left(x^{2}+1\right)^{2}}+k \text { ثابت حقيقي . }
$$

$$
f(x)=\frac{1}{4} \times 4 .(4 x-5)^{4} \quad: \quad: \quad f(x)=(4 x+5)^{4}
$$

$$
\text { إذن } f(x)=\frac{1}{4} \times h^{\prime}(x) \cdot[h(x)]^{4}: \quad \text { : }
$$

$$
h(x)=4 x+5
$$

$$
F(x)=\frac{1}{4} \times \frac{[h(x)]^{5}}{5}+k \quad: \quad \text { و بالتّالي }
$$

$$
\begin{align*}
& \mathrm{F}(x)=\sqrt{x-1}-1 \quad \text { : } \mathrm{l} \text { : } \mathrm{k}=-1 \quad \text { : } \\
& I=\mathbb{R}: \quad D_{f}=\mathbb{R} \quad, f(x)=\sin \frac{\pi x}{8} \\
& \mathrm{~F}(x)=\frac{\frac{-1}{\pi}}{\frac{\pi}{8}} \cos \frac{\pi x}{8}+k \text { : } \\
& \text { ومنه : } F(2)=0 \text { : } \quad \mathbf{~} \quad \text { لكن } \quad \text { (x) }=\frac{-8}{\pi} \cos \frac{\pi x}{8}+k \\
& \frac{-8}{\pi} \frac{\sqrt{2}}{2}+k=0 \text { ومنه: } \\
& k=\frac{4 \sqrt{2}}{\pi} \quad: \quad \frac{-4 \sqrt{2}}{\pi}+k=0 \quad: \quad \text { وبالتالي } \\
& . \mathrm{F}(x)=\frac{-8}{\pi} \cos \frac{\pi x}{8}+\frac{4 \sqrt{2}}{\pi} \text { : } \\
& D_{f}=\mathbb{R}_{+}^{*} ; f(x)=2 x-\frac{1}{\sqrt{x}} \\
& \text {. } \left.f(x)=2 x-2 \cdot \frac{1}{2 \sqrt{x}}: \quad \mathrm{I}=\right] 0 ;+\infty[: \text { و و لاينا } \\
& \text {. } \mathrm{F}(x)=x^{2}-2 \sqrt{x}+k: \int \text { : } \\
& \text {. }(2)^{2}-2 \sqrt{2}+k=0 \quad \text { : } \quad \text { : } \quad \text { : } \\
& \mathrm{F}(x)=x^{2}-2 \sqrt{x}+2 \sqrt{2}-4 \quad: \quad \mathrm{l} \text { : } \mathrm{k}=2 \sqrt{2}-4 \quad: \text { : } \\
& \text {. } \mathrm{F}(x)=\frac{x^{3}}{3}-4 x+k \text { : } f(x)=x^{2}-4 \\
& \text {. } \frac{1}{3}-4+k=2 \quad \text { ومنه } \quad \mathrm{F}(1)=2: \text { كن } \\
& \text {. } \mathrm{F}(x)=\frac{x^{3}}{3}-4 x+\frac{17}{3}: \text { ومنه } \mathrm{k}=\frac{17}{3} \quad: \text { ي } \\
& f(x)=1 \cdot(x+3)^{2} \quad: \quad f(x)=(x+3)^{2} \text { (2 }
\end{align*}
$$

$\mathrm{F}(x)=\frac{-4}{5} x^{5}+\frac{2}{3} x^{3}+k$: معرفة كما يلي F F وعليه تقبل دو ال اصلية \mathbb{R}

$$
f(x)=(-1)(-1)(-x+3)^{4} \quad: \quad f(x)=(-x+3)^{4}
$$

$$
\text { وبالتالي : } F(x)=(-1) \cdot \frac{(-x+3)^{5}}{5}+k \quad
$$

$$
\mathrm{F}(x)=\frac{-1}{5}(-x+3)^{5}+\mathrm{k}: \text { : }
$$

$$
\frac{-1}{5}(-2+3)_{6}^{5}+k=0 \quad \text { و لدينا : } \quad \text { ومنه } \quad F(2)=0
$$

$$
\text { : } \mathbf{F}(x)=\frac{-1}{5}\left(-x^{\ell}+3\right)^{5}+\frac{1}{5} \quad: \quad \text { وعني }: \quad \frac{1}{5}
$$

$$
D_{f}=\mathbb{R} \quad ; f(x)=\frac{2 x+3}{\left(x^{2}+3 x+8\right)^{2}}
$$

$$
\text { وبالتّالي : } \mathrm{F}(x)=\frac{-1}{x^{2}+3 x+8}+k .
$$

$$
\frac{-1}{2^{2}+3(2)+8}+k=0 \quad: \quad \text { ومنه } F(2)=0 \quad \text { لكن }
$$

$$
\text { وعليه : } k=\frac{-1}{x^{2}+3 x+8}+\frac{1}{18}:(x)=\frac{18}{} \text { ومنة }
$$

$$
. \mathrm{I}=] 1 ;+\infty\left[: D_{f}=\right] 1 ;+\infty\left[\quad, \quad f(x)=\frac{1}{2 \sqrt{x-1}}(4\right.
$$

$$
\mathbf{k} \in \mathbb{R} ; \mathbf{F}(x)=\sqrt{x-1}+\mathbf{k} \quad: \quad \text { وبالتنالي }
$$

$$
\sqrt{2-1}+k=0 \quad: \quad F(2)=0 \quad \text { ومنه } \quad \text { : }
$$

$$
\begin{aligned}
& \frac{-4}{5}(2)^{5}+\frac{2}{3}(2)^{3}+k=0: \quad \text { : } \mathbf{~} \\
& \text {. } \frac{-128}{5}+\frac{16}{3}+k=0 \text { : } 0 \\
& k=\frac{304}{15} \text { إنن : ومنه } \quad \frac{-304}{15}+k=0 \quad \text { إنه } \\
& F(x)=\frac{-4}{5} x^{5}+\frac{2}{3} x^{3}+\frac{304}{15} \quad \text {, }
\end{aligned}
$$

.F $(x)=\frac{1}{2} \sin 2 x+\frac{1}{2} \cos x+\frac{\sqrt{3}-1}{4}: \quad$ أي $\quad k=\frac{\sqrt{3}-1}{4}$ $\mathrm{F}(x)=\frac{-1}{2 \cos ^{2} x}+\mathrm{k} \quad: \quad f(x)=\frac{-\sin x}{\cos ^{3} x}$ $k=\frac{1}{2}: \frac{-1}{2}+k=0$ كن : . $\mathrm{F}(x)=\frac{-1}{2 \cos ^{2} x}+\frac{1}{2}$,

$$
f(x)=\frac{2 \sin x \cos x}{2 \sqrt{1+\sin ^{2} x}}: \text { : } \operatorname{din} \quad f(x)=\frac{\sin 2 x}{2 \sqrt{1+\sin ^{2} x}}
$$ $h(x)=1+\sin ^{2} x: ~ f(x)=\frac{h^{\prime}(x)}{2 \sqrt{h(x)}}$: وعيه $f(x)$ من الشثل $f(x)$

$$
\mathrm{F}(x)=\sqrt{1+\sin ^{2} x}+\mathrm{k} \text { : } \mathrm{F}(x)=\sqrt{h(x)}+\mathrm{k} \text { : }
$$

$$
\text { كن : } \left.\quad \text { وغيه : } \quad \sqrt{1+1}+k=\frac{\pi}{2}\right)=\frac{1}{2} \text {. }
$$

$$
\text { وومنه : } \mathrm{F}(x)=\sqrt{1+\sin ^{2} x}+\frac{1}{2}-\sqrt{2}: \mathrm{l}: \mathrm{j}=\frac{1}{2}-\sqrt{2}
$$

$\mathrm{F}^{\prime}(x)=f(x)$: F

$$
F^{\prime}(x)=\frac{\alpha\left(x^{2}+6 x+18\right)-(\alpha x+\beta)(2 x+6)}{\left(x^{1}+6 x+18\right)^{2}}
$$

$$
=\frac{-\alpha x^{2}-2 \beta x+18 \alpha-6 \beta}{\left(x^{2}+6 x+18\right)^{2}}
$$

$$
\left\{\begin{array}{l}
-\alpha=1 \\
-2 \beta=6 \\
18 \alpha-6 \beta=0
\end{array}\right.
$$

بالمطابقة مع (f(x) نجد :

$$
\beta=-3, \alpha=-1
$$

وننه مجموعة الدوال الأصلية للاادلةf هي :

$$
\begin{aligned}
& \text {. } \mathrm{F}(x)=\frac{(x+3)^{3}}{3}+\mathrm{k} \text { : بالتالي } \\
& \text {. } \frac{(-1+3)^{3}}{3}+k=1 \text { : } \quad F(-1)=1 \text { : كنه } \\
& \mathrm{F}(x)=\frac{(x+3)^{3}}{3}-\frac{5}{3} \quad \mathrm{k}=\frac{-5}{3}: \text { بالتالي } \\
& \text {. } \mathrm{F}(x)=\frac{-1}{x-1}+\mathrm{k} \quad \text { : } \quad f(x)=\frac{1}{(x-1)^{2}}(3
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } \mathrm{F}(x)=\frac{-1}{x-1}+\mathrm{k} \text { : } \\
& \text {. } \mathrm{F}(x)=x^{2}+\frac{1}{x}+\mathrm{k} \quad: \quad \text { : } f(x)=2 x-\frac{1}{x^{2}}(4
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } \mathrm{F}(x)=x^{2}+\frac{1}{x}+1 \quad: \quad \text {, } \\
& \text {. } f(x)=2 \times \frac{2 x}{2 \sqrt{x^{2}+1}}: \text { : } f(x)=\frac{2 x}{\sqrt{x^{2}+1}} \\
& \mathrm{~F}(0)=1 \text { ن ك } \mathrm{S} \quad \mathrm{~F}(x)=2 \sqrt{x^{2}+1}+\mathrm{k} \quad \text { : } \\
& \text {. } \mathrm{k}=-2 \text { : : } 2+\mathrm{k}=0 \text { : } \\
& \text {. } \mathrm{F}(x)=2 \sqrt{x^{2}+1}-2: \text { ذن } \\
& f(x)=\cos 2 x-\frac{1}{2} \sin x \\
& \text { F }\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}: \sin (x)=\frac{1}{2} \sin 2 x+\frac{1}{2} \cos x+\mathrm{k} \text { : }
\end{aligned}
$$

$$
f(x)=\frac{1}{2}-\frac{1}{2} \cos (4 x): \text { ! }
$$

$$
F(x)=\frac{1}{2} x-\frac{1}{2} \times \frac{1}{4} \sin (4 x)+k \quad \text { و }
$$

ابذن :

$$
: f(x)=\sin ^{3} x
$$

$$
\begin{aligned}
\sin ^{3} x & =\sin x \cdot \sin ^{2} x \\
& =\sin x \cdot\left(1-\cos ^{2} x\right) \\
& =\sin x-\sin x \cdot \cos ^{2} x
\end{aligned}
$$

$$
f(x)=\sin x-\sin x \cdot \cos ^{2} x \quad: \quad \text { ! }
$$

$$
f(x)=\sin x \cos ^{2} x
$$

!ذن :
$: f(x)=\sin 3 x \cos 5 x$
$\sin \alpha \cdot \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]:$ لينا $\sin 3 x \cdot \cos 5 x=\frac{1}{2}[\sin (3 x+5 x)+\sin (3 x-5 x)]:$, و منه

$$
\begin{aligned}
& =\frac{1}{2} \sin 8 x+\frac{1}{2} \sin (-2 x) \\
& f(x)=\frac{1}{2} \sin 8 x-\frac{1}{2} \sin 2 x: \text { و و م }
\end{aligned}
$$

$$
\text { : حيث k ثابت حقيقي . } H(x)=\frac{-x-3}{x^{2}+6 x+18}+\mathrm{k}
$$

 $H(x)=\frac{-x-3}{x^{2}+6 x+18}+\frac{1}{6} \quad$ القيمة 2 من أجل $x=0$ معرفة بـ التمرين 8 :

$$
: f(x)=\sin ^{2} x
$$

$f(x)=\frac{1}{2}-\frac{1}{2} \cos 2 x:$ ومنه $\sin ^{2} x=\frac{1-\cos 2 x}{2}:$ لدينا

$$
f(x)=\cos ^{2} x
$$

$$
f(x)=\frac{1}{2}+\frac{1}{2} \cos 2 x \quad \cos ^{2} x=\frac{1+\cos 2 x}{2}: \text { : }
$$

$$
F(x)=\frac{1}{2} x+\frac{1}{2} \times\left(\frac{1}{2} \sin 2 x\right)+k: 1
$$

$$
\text { و عليه : } \mathrm{F}(x)=\frac{1}{2} x+\frac{1}{4} \sin 2 x+k \text { ثابت حقيقي . }
$$

$$
f(x)=\cos ^{2}\left(2 x+\frac{\pi}{2}\right)
$$

$$
\cos ^{2}\left(2 x+\frac{\pi}{2}\right)=\frac{1+\cos \left[2\left(2 x+\frac{\pi}{2}\right)\right]}{2}=\text { لدينا }
$$

$$
\cos ^{2}\left(2 x+\frac{\pi}{2}\right)=\frac{1}{2}+\frac{1}{2} \cos (4 x+\pi)=: \text {, }
$$

$$
\begin{aligned}
& \text { و و بالتالي : } F(x)=\frac{1}{2} x-\frac{1}{2} \times \frac{1}{2} \sin 2 x+k \\
& \text { و منه : } k \text { : } \mathrm{F}(x)=\frac{1}{2} x-\frac{1}{4} \sin 2 x+\mathrm{k} \text {. }
\end{aligned}
$$

$$
g(x)=\frac{2}{x+2}-\frac{5}{2(x+2)^{2}}-\frac{7}{18}=\text { و منه }
$$

التّمرين 10 : 1
 $2=a \times 4:$: فان $A \in(\Delta): y=a x$ $y=\frac{1}{2} x:$ ويالتالي : $\mathbf{a}=\frac{1}{2}: \quad a=\frac{2}{4}:$ و عليه

$$
f(x)=\frac{1}{2} x: \text { و منه }
$$

2) حساب A (x) :

$$
A(x)=\frac{x \times f(x)}{2}: \text { مساحة المثلث }
$$

. $A(x)=\frac{1}{4} x^{2}$ و ومنه : $A(x)=\frac{x \cdot \frac{1}{2} x}{2}$
: 3

$$
A^{\prime}(x)=\frac{1}{2} x \quad \text { لدينا }
$$

$$
A^{\prime}(x)=f(x) \text { الاستنتاج }
$$

ومنه مساحة الحيز من المستوي هي عبارة دالة الصلية للاالة f f.

$$
\begin{aligned}
F(x) & =\frac{1}{2} \times \frac{-1}{8} \cos 8 x-\frac{1}{2} \times \frac{-1}{2} \cos 2 x+k: \\
& F(x)=\frac{-1}{16} \cos 8 x+\frac{1}{4} \cos 2 x+k: 8
\end{aligned}
$$

1

$$
\text { . } D_{f}=\mathbb{R}-\{-2\}: D_{f}=\{x \in \mathbb{R}: x+2 \neq 0\}
$$

$$
f(x)=\frac{\alpha}{(x+2)^{2}}+\frac{\beta}{(x+2)^{3}} \quad \text { لעينا }
$$

$$
f(x)=\frac{\alpha(x+2)+\beta}{(x+2)^{3}}=\text { ومنه }
$$

$$
f(x)=\frac{\alpha x+2 \alpha+\beta}{(x+2)^{3}}:
$$

$$
\left\{\begin{array}{l}
\alpha=-2 \\
\beta=5
\end{array}:\left\{\begin{array}{l}
\alpha=-2 \\
2 \alpha+\beta=1
\end{array}:\right. \text { ومبائلأي }\right.
$$

$$
f(x)=\frac{-2}{(x+2)^{2}}+\frac{5}{(x+2)^{3}}: \text { ومنه }
$$

2) استنتاج الدو الل الانصلية :

$$
f(x)=-2 \times \frac{1}{(x+2)^{2}}+5 \times \frac{1}{(x+2)^{3}} \quad \text { لدينا }
$$

$$
h(x)=\frac{2}{x+2}-\frac{5}{2(x+2)^{2}}+\mathbf{k} \quad \text { و عليه }
$$

(3) استنتـاج
. $\mathrm{k}=\frac{-7}{18}$: لينا : $\frac{2}{3}-\frac{5}{18}+\mathrm{k}=0$ ومنه $h(1)=0$ ومنه

$$
\lim _{x \rightarrow-\infty} \mathrm{e}^{x}=0
$$

$$
\lim _{x \rightarrow-\infty} \mathrm{e}^{x}=+\infty
$$

- من أجل كل عدد حقيقي

$$
x=y \quad \text { نكافئ } \mathrm{e}^{x}=\mathrm{e}^{y} \quad \text { : لدينا }
$$

$$
x>y \text { نكاقئ } e^{x}>e^{y}
$$

$$
f^{\prime}(x)=g^{\prime}(x) \mathrm{e}^{\mathrm{g}(x)}: \text { حيث I }
$$

$$
f(x)=\mathrm{e}^{x^{2}-4 x}: \text { عين الدالة المشتة للدالـة حيث }
$$

$$
f^{\prime}(x)=(2 x-4) \mathrm{e}^{x^{2}-4 x}
$$

$$
\text { خاصية } 8 \text { : }
$$

$$
\quad y=k \mathrm{e}^{\mathrm{ax}}-\frac{\mathrm{b}}{\mathrm{a}}
$$

$$
\begin{aligned}
& y=k \mathrm{e}^{2 x}+\frac{3}{2} \quad: \text { :تططى بالعبارة } y^{\prime}=2 y-3 \text { المعادلة } \\
& \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} x^{n} \mathrm{e}^{x}=0 \quad \text { (2 } \quad \lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x}}{x^{n}}=+\infty \quad \text { (1 } \\
& \text { : } y^{\prime}=\mathrm{a} y+\mathrm{b} \text { b } \\
& \text { كاصية } 9 \text { : }
\end{aligned}
$$

ليكن a عدد حقيقي

$$
\text { تحبرهن علـة } 1 \text { : } 1
$$

 $x \mapsto \exp (x):$: تسمى هذه الداللة الدالة الأسنية و نرمز لها بالرمز $f(0)=1$

مبر هنة 2 :

> الدالة الأسية موجبة تماما على

$$
\text { مبر هـة } 3 \text { : }
$$

 بالعببارة :

$$
\text { : } e^{x} \text { الرمز }
$$

$$
\text { مبر هنة } 4 \text { : }
$$

$\exp (a+b)=\exp (a) \times \exp (p): b$ و
مبر هنـة 5 :

$$
\text { العدد الحقيقي exp(1) يرمز لهل بالرهز e حيث : e 2,72 } e=
$$

$$
\text { من أجل كل عدد حقيقي x نضع : exp }(x)=e^{x} \text {. }
$$ خو اص :

$e^{0}=1 ; e^{1}=e ; e^{-1}=\frac{1}{e} ; e^{\frac{1}{2}}=\sqrt{e}$

من أجل كل عددان حقيقيان a وb

$$
\mathrm{e}^{-\mathrm{a}}=\frac{1}{\mathrm{e}^{\mathrm{a}}}
$$

$$
e^{a+b}=e^{a} \times e^{b}
$$

$$
\begin{aligned}
& \mathbf{e}^{r X}=\left(\mathrm{e}^{\mathrm{x}}\right)^{r} \quad, \mathbf{r} \in \mathbf{Q} \\
& e^{a-b}=\frac{e^{a}}{e^{b}} \\
& x \mapsto \mathrm{e}^{x}: \text { : 3 } \\
& \text { نتائج : من تـعريف اللاالةّ } x \mapsto \mathrm{e}^{x} \text { لدينا : } \\
& \lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1}{x}=1 \quad \bullet \quad \mathbb{R} \text { متز ايدةٌ تمامـا على } x \mapsto \mathrm{e}^{x} .
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x+y=5 \\
e^{2 x} \cdot \frac{1}{e}=e^{-y}
\end{array},\left\{\begin{array}{l}
x y=-2 \\
e^{5 x} \cdot e^{6 y}=\frac{1}{e^{7}}
\end{array}:\left\{\begin{array}{l}
x y=12 \\
e^{x} \cdot e^{y}=e^{-7}
\end{array}\right.\right.\right.
$$

الالتــــــــاريــــن

عين مجموعة تعريف الادالة f و المجموعة التي تقبل فيها الالشتقاق ثم عين دالتّها المششتقة في
كل حالة مما يلي :

$$
\begin{array}{rr}
f(x)=\mathrm{e}^{x^{2}-4 x}-5 x(2 & f(x)=\mathrm{e}^{-2 x+5}(1 \\
f(x)=\mathrm{e}^{\frac{x-1}{x}}(4 & f(x)=\mathrm{e}^{\frac{1}{x-2}}(3 \\
f(x)=\mathrm{e}^{\sqrt{x}-1}(6 & f(x)=\mathrm{e}^{|x|}(5 \\
f(x)=\frac{e^{x}}{e^{x}-1}(8 & f(x)=\frac{e^{x}-1}{e^{x}}(7 \\
f(x)=\frac{e^{x}-1}{x^{2}-4}(10 & f(x)=\frac{e^{2 x}-4}{e^{2 x}}(9 \\
f(x)=\frac{e^{x}}{e^{2 x}-1}(12 & f(x)=e^{2 x}-4 e^{x}+5(11 \\
& 5 \text { (} 12
\end{array}
$$

مين الدو ال الانصلية للالة f في كل حالةَ مما يـي : $f(x)=x e^{x^{2}}\left(2 \quad f(x)=e^{2 x}(1\right.$ $f(x)=\frac{e^{x}}{\left(e^{x}+1\right)^{2}}\left(4 \quad f(x)=\left(3 x^{2}-x\right) e^{2 x^{3}-x^{2}}\right.$

$$
f(x)=\frac{e^{2 x}}{\sqrt{e^{2 x}+1}}\left(6 \quad f(x)=\frac{e^{\frac{1}{x}}}{x^{2}}\right.
$$

$$
\text { الترين } 6 \text { :- }
$$

الحسب نهايات الدالة f من أجل : $x \rightarrow+\infty$ في كل $x \rightarrow$ حالة مما يلي :

$$
\begin{array}{cc}
f(x)=e^{-x+1} \\
f(2 & f(x)=\frac{e^{x^{2}}}{x} \\
f(x)=e^{2 x}-4 x & f(x)=\frac{e^{x^{3}}}{x^{3}}
\end{array}
$$

ضع العلامة ل أمام كل جملة صحيحة و العلامة × أمام كل جملة خاطئة

1) يوجد عدد x من $e^{-x}<0$ بحيث 2) حل المعاديلة التفاضلية

$$
f(x)=k \cdot \mathrm{e}^{-2 x}
$$

$$
e^{-x}=-e^{x}
$$

$$
e^{2 x}=-e^{x 2}
$$

$$
e^{2 x}=\left(e^{x}\right)^{2}
$$

R

$$
e^{\frac{1}{3} x}=\sqrt[3]{e^{x}}
$$

$$
\lim _{x \rightarrow+\infty} \mathrm{e}^{-4 x}=0
$$

$$
\lim _{x \rightarrow+\infty} \frac{x}{\mathbf{e}^{x}}=0
$$

$$
x<y: \mathrm{e}^{-x}<\mathrm{e}^{-y}: \text { فإن (10 إذا كان }
$$

$$
\begin{gathered}
\mathrm{e}^{x} \times \mathrm{e}^{-x}=1 \\
\mathrm{e}^{\frac{3}{2}}=\sqrt{\mathrm{e}^{3}}
\end{gathered}
$$

التّمرين 2 :
حل في

$$
\begin{aligned}
& \mathrm{e}^{|x-2|}<\mathrm{e}^{2} \\
& \mathrm{e}^{x^{2}-2}=\mathrm{e}^{-6} \\
&(4 \mathrm{e}^{x^{2}-4 x-5}-\mathrm{e}^{-x^{2}-2}
\end{aligned}=0
$$

الدرس تغير ات الالالة f في كل حالة مما يلي :

$$
\begin{array}{r}
f(x)=\frac{e^{x}-e^{-x}}{2}(2 \\
f(x)=e^{|x|}(4) \\
f(x)=x e^{\frac{1}{x}}
\end{array}
$$

. $f(x)=e^{(x-2)(x+2)}$ (6 $\quad f(x)=\frac{e^{x}+2}{1-e^{x}}$ التمرين 12 :

$$
f(x)=x+\frac{e^{x}}{e^{x}+1}: \text { د دالة معرفة على } f \text { بالعبارة } f
$$

 1) احسب (C)

(C) (C) بين أن المستقيم ذو المعاديلته 4 (C) 1 (C) 5) عين النقطة ω نقطة تقاطع (C) مع محور التر اتيب ثم بين أن ω (C) مركز تناظر

للـنحنى (C) (C)
(6) انشّئ المنخني (C) (C)

التّرين 13 :
$f(x)=x+1-e^{-x} \quad$: الدالة f معرفة على \mathbb{C} كما يلم ($\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}$) تمثيلها البياني في معلم متعامد ومتجانس (C)
(1) الدرس تغير ات الدالة

$. x=0$
 ا) الدرس تغيرات الدالة (2) الين أن المعادلة

$$
-1,28<\alpha<-1,27
$$

. \mathbb{R} 有

$$
\begin{array}{rr}
f(x)=\frac{e^{x-2}}{x}(6 & f(x)=x e^{-5 x} \\
f(x)=\frac{e^{3 x}-5 x^{3}+2}{x^{3}}(8 & \lim _{x \rightarrow+\infty}=\frac{e^{x}}{x^{3}} \\
\hline 7
\end{array}
$$

احسب نهايات الدالةّf $f(x)=\frac{e^{2 x}-1}{x^{2}}\left(2 \quad f(x)=\frac{e^{4 x}-1}{x}(1\right.$

$$
f(x)=\frac{x}{e^{2 x}-1}\left(4 \quad f(x)=\frac{e^{2 x}-2 \mathrm{e}^{x}+1}{x^{2}}\right.
$$

$$
f(x)=\frac{-e^{-x}+1}{x^{2}-x}\left(6 \quad f(x)=\frac{e^{2 x}-1}{4 x^{2}+6 x}\right.
$$

x عدد طبيعي .

$$
\text { . } \lim _{x \rightarrow+\infty} S_{1}(x) \text { (حسب (2) }
$$

$$
\text { التـرين } 9 \text { : ـــــ }
$$

$$
\left\{\begin{array}{l}
f(x)=\frac{\mathrm{e}^{3 x}-\mathrm{e}^{2 x}}{x}, x \neq 0 \\
f(0)=0
\end{array}\right.
$$

$$
\text { 1) الدرس قابلية الاششتقاق للالدالة عند } 0 \text {. }
$$

 1) عين كل من المشتقات المتتالية 2) برهن بالتر اجع أنه من أجل كل عدد طبيعي غير معدوم n يكون :

$$
\begin{aligned}
& \text { 3 } S_{2}(x)=1+\mathrm{e}^{-1}+\mathrm{e}^{-2}+\ldots+\mathrm{e}^{-x}: \text { احسب المجموع } \\
& \text {. } \lim _{x \rightarrow+\infty} S_{2}(x) \text { (حسب) احسب: }
\end{aligned}
$$

 $g^{\prime}(x)=-\left(\frac{\mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}\right)^{2}:$ بين أنه من أجل كل عدد حققيقي -

- استنتج الوضعية النسبية للمنحنى (Г (

6) أنثّئ (

7) بين أن المستققيم (

$$
\begin{aligned}
& .2<\alpha<3 \text { ليكن المجال : } \alpha=[2 ; 3] \text { حيث IIII }
\end{aligned}
$$

1) بين أنه من أجل كل عدد حقيقي x فإن :

لالـ1 الـ

بلم المعادلات و المتر اجحات التّالية :

$$
x(x-4)>0 \text {, } x^{2}-4 x>0: \text { يله }
$$

$$
\begin{aligned}
& f^{\prime}(x)=4\left(\frac{1}{\mathrm{e}^{x}+1}-\frac{1}{\left(\mathrm{e}^{x}+1\right)^{2}}\right) \\
& \text { - }\left|f^{\prime}(x)\right| \leq \frac{1}{2} \text { (2 بين انهـ من أجل كل عدد حقيقي xمن } 1 \text { من }
\end{aligned}
$$

(O; $\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}$) تمثيكها البياتي في معلم متعامد و متجانس (C)

$f(\alpha)$ (2) بين أن 1
 4) الدرس الوضعية النسبية لكل من (C) و (4 (
 6 (C) انشثئ

- $f(x)=80+a e^{b x}$: 1
(O; $\vec{i}, \overrightarrow{\mathbf{j}}$) تمثيلها البياني في معلم متعامد ومتجانس (C)
 (تعطي القيم الحقيقية ثم القيم المدورة إلى 10 10
$\mathrm{U}_{\mathrm{n}}=80-27 \mathrm{e}^{-0,1 n}$ (2) بيطظى إنتاج شركة في السنة n (2
- بين أن المتتالية (
(3) نعرف المتتالية

$$
\lim _{n \rightarrow+\infty} V_{n} \text { حسب }
$$

$$
\text { احسب } S=V_{1}+V_{2}+\ldots+V_{12}
$$

. $f(x)=\frac{3 \mathrm{e}^{x}-1}{\mathrm{e}^{x}+1} \quad:$: \mathbb{R} بالعبارة f
 . $f(-x)+f(x)=2$ (بين أنه من أجل كل عدد حقيقي x فابن : 1 (I ثم استتتج وجود مركز تنظظر ω للمنحنى (Г) 2) احسب نهايات الثالة f 3) احسب (3 4) اكتب معادلة المماس ((4) للمنحنى (Г) في النقطة ذات الفاصلة 0 .

$$
\left\{\begin{array}{l}
x y=12 \\
\mathrm{e}^{x+y}=e^{-7}
\end{array}:\left\{\begin{array}{l}
x y=12 \\
\mathrm{e}^{x} \cdot \mathrm{e}^{y}=e^{-7}
\end{array}:\right. \text { لدينا }\right.
$$

$$
g^{2}+7 y+12=0 \text { ومنه : } x, y \text { حلين للمعادلة: }\left\{\begin{array}{l}
x y=12 \\
x+y=-7
\end{array}\right.
$$

$$
\text { لدينا : } \quad \text { و } \quad \text { و } \quad \text { ومنه للمعادلة حلين متمايزين : }
$$

$$
(x ; y)=(-4 ;-3) \quad(x ; y)=(-3 ;-4) \quad: \quad \text { إن }
$$

$$
\text { مجموعة الحول : } S=\{(-4 ;-3),(-3 ;-4)\}
$$

$$
\left\{\begin{array} { l }
{ x y = - 2 } \\
{ \mathrm { e } ^ { 5 x + 6 y } = \mathrm { e } ^ { - 7 } }
\end{array} : \text { :وهي تكافئ } \quad \left\{\begin{array}{l}
x y=-2 \\
\mathrm{e}^{5 x} \cdot \mathrm{e}^{6 y}=\frac{1}{\mathrm{e}^{7}}:
\end{array}\right.\right.
$$

$$
\left\{\begin{array}{l}
5 x \cdot 6 y=-60 \\
5 x+6 y=-7
\end{array}\right.
$$

$$
\text { !ذن } g^{2}+7 g-60=0 \text { هما حلين للمعادلة : } 6 y, 5 x
$$

$$
\text { لدينا : } \Delta=289=(17)^{2}=5 \text { ومنه للمعادلة حلين : } \Delta=-12 \text { و }
$$

$$
y=\frac{5}{6}, x=\frac{-12}{5}: \text { ومنه : } 6 y=5 \text {, } 5 x=-12 \text { وعليه }
$$

$$
y=-2, x=1: 5 x=-12,5 x=5 \text {, } 6 y=1
$$

$$
S=\left\{\left(\frac{-12}{5} ; \frac{5}{6}\right),(1 ;-2)\right\} \quad: \quad \text { :جموعة حلول الجملة }
$$

$$
\text { وعليه : } y=9 \text { و ومنه : } x=-4 \text {. }
$$

$$
\text { S }=\{(-4 ; 9)\} \quad \text { : بجموعة حلول الجملة }
$$

و x] $S=]-\infty ; 0[\cup] 4 ;+\infty[:$: مجموعة الحول
 $x^{2}+3 x-3=0 \quad$ وعليه : $3 x-5=-x^{2}-2 x$ ومنه

لدينا : $\Delta=21$ ومنه للمعادلة طلين متمايزين

$$
x_{2}=\frac{-3+\sqrt{21}}{2} ; x_{1}=\frac{-3-\sqrt{21}}{2}
$$

$$
x^{2}-5 x=-6: \text { (4) لدينا : } \quad e^{x^{2}-5 x}=e^{-6} \text { هن تكافئ }
$$

$$
\text { إذن : } x^{2}+5 x+6=0
$$

$$
x_{2}=3, x_{1}=2 \quad \Delta=1
$$

$$
\text { 5) لدينا : } e^{x}(2 x-3) \leq 0 \text { و وهنه تكافئ: } 2 x e^{x}-3 e^{x} \leq 0
$$

$1-3 x \leq 5 x-4$:

$$
x_{2}=4 \quad, \quad x_{1}=3 \quad \text { ومنه للمعادلة حلين متمايزين } \Delta=1
$$

$$
\begin{aligned}
& \text { ومنه: و ويالتالي : } x \geq \frac{5}{8} \quad-8 x \leq-5 \\
& \text { S }=\left[\frac{5}{8} ;+\infty[\quad \text { : }\right. \\
& \left(x^{2}-5 x\right) e^{x}-(2 x-12) e^{x}=0(7 \\
& e^{x}\left(x^{2}-5 x-2 x+12\right)=0 \text { وهذه تكافئ } \\
& \text { و وهذه تكافی: : }
\end{aligned}
$$

$$
\begin{aligned}
& x \leq \frac{3}{2} \text { وهي تكافئ: } 2 x-3 \leq 0 \text { ومنه } \\
& \text { S }
\end{aligned}
$$

$$
\begin{aligned}
& |x-2|<2 \text { : } \mid \text { : } 2 \\
& 0<x<4 \text { : وعليه : } 0 \text { : } \\
& \text { مجموعة الحلول : }
\end{aligned}
$$

$f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \times \mathrm{e}^{\sqrt{x}-1}: \mathbb{R}_{+}^{*}$ حيث

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(\mathrm{e}^{2 x}\right)-2 \mathrm{e}^{2 x}\left(\mathrm{e}^{x}-1\right)}{\left(\mathrm{e}^{2 x}\right)^{2}}: \text { حيث } \mathrm{f} \\
& f^{\prime}(x)=\frac{\mathrm{e}^{2 x}\left(\mathrm{e}^{x}-2 \mathrm{e}^{x}+2\right)}{\mathrm{e}^{4 x}}: \\
& f^{\prime}(x)=\frac{-\mathrm{e}^{x}+2}{\mathrm{e}^{2 x}}: \text { : }!
\end{aligned}
$$

$e^{x} \neq 1$ ومنه $e^{x}-1 \neq 0$ معرفة من أجل f الدالد $f(x)=\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}-1}(8$

$f^{\prime}(x)=\frac{-\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-1\right)^{2}}$: $f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x}-1\right)-\mathrm{e}^{x} \cdot \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-1\right)^{2}}:$ وثيث \mathbb{R} R الدالة f. $f(x)=\frac{\mathrm{e}^{2 x}-4}{\mathrm{e}^{2 x}}$ (9

$$
f^{\prime}(x)=\frac{2 \mathrm{e}^{2 x} \cdot \mathrm{e}^{2 x}-2 \mathrm{e}^{2 x}\left(\mathrm{e}^{2 x}-4\right)}{\left(\mathrm{e}^{2 x}\right)^{2}}: \text { حيث }
$$

$f^{\prime}(x)=\frac{8}{e^{2 x}} \quad: \quad f^{\prime}(x)=\frac{2 \mathrm{e}^{2 x}\left(\mathrm{e}^{2 x}-\mathrm{e}^{2 x}+4\right)}{\left(\mathrm{e}^{2 x}\right)^{2}} \quad: \quad$: O $x^{2}-4 \neq 0$: الدالة $f(x)=\frac{\mathrm{e}^{x}-1}{x^{2}-4}$
 حيث : $f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(x^{2}-4\right)-2 x\left(\mathrm{e}^{x}-1\right)}{\left(x^{2}-4\right)^{2}}:$ ومنه
$f^{\prime}(x)=\frac{x^{2} \mathrm{e}^{x}-4 \mathrm{e}^{x}+2 x \mathrm{e}^{x}+2 x}{\left(x^{2}-4\right)^{2}}$

$$
f^{\prime}(x)=-2 \mathrm{e}^{-2 x+5}: \text { حيث }
$$

$$
f^{\prime}(x)=(2 x-4) \mathrm{e}^{x^{2}-4 x}-5: \text { حيث }
$$

$$
D_{f}=\mathbb{R}-\{2\}: \text { : }
$$

$$
f^{\prime}(x)=\frac{-1}{(x-2)^{2}} \times \mathrm{e}^{\frac{1}{x-2}}: D_{f} \text { و تقبل الاشتقاق على }
$$

$$
D_{f}=\mathbb{R}^{*}: \text { :الدالة } f \text { معرفة من اجل } f^{\prime}(x)=\mathrm{e}^{\frac{x-1}{x}}
$$

$$
f^{\prime}(x)=\frac{1}{\mathrm{x}^{2}} \mathrm{e}^{\frac{x-1}{x}}: D_{f} \text { تقبل الاشتقّق عيث }
$$

$$
\left\{\begin{array}{l}
f(x)=\mathrm{e}^{x} ; x \geq 0 \\
f(x)=\mathrm{e}^{-x} ; x \leq 0
\end{array}: x \mathbb{R}\right. \text { و لدينا }
$$

$$
f^{\prime}(x)=\mathrm{e}^{x} \quad \text { : من أجل } f: x>0 \text { تقبل الاشتققاق حيث * } f:
$$

$$
f^{\prime}(x)=-\mathrm{e}^{-x} \text { : من أجل } f: x<0 \text { تقبل الالشتقاق حيث \% }
$$

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1}{x}=1
$$

* من أجل x=0 : ندرس ققبلية الاشتققاق :

إذن f تقبل الاشتُقّق عند 0 من اليمين

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} \frac{\mathrm{e}^{-x}-1}{x}
$$

$$
=\lim _{x \rightarrow 0}\left[-\frac{\mathrm{e}^{-x}-1}{-x}\right]=-1
$$

$$
\text { إذن f تقبل الاشتقاق عذد } 0 \text { من اليسار }
$$

$$
\text { ككن الدالة f غير قابلةة للاشتقاق عند } 0 \text {. }
$$

 $f(x)=\frac{h^{\prime}(x)}{[h(x)]^{n}}:$:الدالة $f(x)=\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}$ الدالة f معرفة و مستمرة على $f^{\text {ع }}$ و عليه تقبل دو ال اضلية g حيث : $g(x)=\frac{-1}{\mathrm{e}^{x}-1}+c:$: $g(x)=\frac{-1}{(2-1)\left(\mathrm{e}^{x}-1\right)^{2-1}}$ مع c ثابت حقيقي.
$f(x)=\frac{1}{x^{2}} \times \mathrm{e}^{\frac{1}{x}}: \quad D_{f}=\mathbb{R}^{*}, f(x)=\frac{\mathrm{e}^{\frac{1}{x}}}{x^{2}}$
$f(x)=k \cdot h^{\prime}(x) \times[h(x)]^{n}:$ أي

$$
D_{f}=\mathbb{R} \quad, \quad f(x)=\frac{\mathrm{e}^{2 x}}{\sqrt{e^{2 x}+1}}
$$

$f(x)=\frac{h^{\prime}(x)}{2 \sqrt{h(x)}}:$: ولدينا $f(x)=\frac{1}{2} \frac{2 \mathrm{e}^{2 x}}{\sqrt{e^{2 x}+1}}$
 . مع c $g(x)=\sqrt{\mathrm{e}^{2 x}+1}+\mathrm{c}$
: شساب النهايات :

1) $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x^{2}}}{x}=\lim _{x \rightarrow+\infty} x \cdot \frac{\mathrm{e}^{x^{2}}}{x^{2}}$
2) $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} e^{-x+1}=0$
3) $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x^{3}}}{x^{3}}=0$
$f^{\prime}(x)=\frac{\left(x^{2}-2 x-4\right) \mathrm{e}^{x}+2 x}{\left(x^{2}-4\right)^{2}}:$ وبالثتالي

$$
f^{\prime}(x)=2 \mathrm{e}^{2 x}-4 \mathrm{e}^{x}: \text { حيث }
$$

$$
e^{2 x} \neq 1: \text { : الدالة }: f(x)=\frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}-1}(12
$$

$$
f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(e^{2 x}-1\right)-2 \mathrm{e}^{2 x} \cdot \mathrm{e}^{x}}{\left(e^{2 x}-1\right)^{2}}: \text { تقبل الاشثتقاق على } D_{f} \text { :يث }
$$

$$
f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(-\mathrm{e}^{2 x}-1\right)}{\left(e^{2 x}-1\right)^{2}}: \text { وبالتالي} f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(e^{2 x}-1-2 \mathrm{e}^{2 x}\right)}{\left(x^{2}-1\right)^{2}}:
$$

التمرين 5 :

تعيين الدوال الأصلية :

$$
\begin{array}{r}
f(x)=\frac{1}{2} \cdot 2 \mathrm{e}^{2 x}: D_{f}=\mathbb{R}, f(x)=\mathrm{e}^{2 x} \quad \text { (1 } \mathrm{S} \text { وهي من الشكل : }
\end{array}
$$

$$
\text { اللالةة } f \text { معرفة و مسنمرة عظى } \mathbb{R} \text { وعثيه تقبل دو ال أصلية g حيث }
$$. $\quad g(x)=\frac{1}{2} \times \mathrm{e}^{2 x}+\mathrm{c}$

$$
f(x)=\frac{1}{2} \cdot 2 x \cdot \mathrm{e}^{x^{2}}: D_{f}=\mathbb{R}, f(x)=\mathrm{xe}^{x^{2}}
$$

$$
\text { اللالة.f معرفة ومستمرة على } \mathbb{R} \text { و عليه تقبل دو ال انصلية g حيث : }
$$

$$
\text { . } \quad g(x)=\frac{1}{2} \cdot \mathrm{e}^{x^{2}}+\mathrm{c}
$$

$f(x)=\frac{1}{2}\left(6 x^{2}-2 x\right) \mathrm{e}^{2 x^{3}-x^{2}}:$ ولدينا $D_{f}=\mathbb{R}, f(x)=\left(3 x^{2}-x\right) \mathrm{e}^{2 x^{3}-x^{2}}(3$
3) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{2 x}-2 \mathrm{e}^{x}+1}{x^{2}}=\lim _{x \rightarrow 0}\left(\frac{\mathrm{e}^{x}-1}{x}\right)^{2}=1$
4) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x}{e^{2 x}-1}=\lim _{x \rightarrow 0} \frac{1}{\frac{e^{2 x}-1}{2 x} \times 2}=\frac{1}{2}$
5) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{2 x}-1}{4 x^{2}+6 x}=\lim _{x \rightarrow 0}=\frac{e^{2 x}-1}{2 x(2 x+3)}$

$$
=\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{2 x} \times \frac{1}{2 x+3}=\frac{1}{3}
$$

6) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{-x}+1}{x^{2}-x}=\lim _{x \rightarrow 0} \frac{-\left(e^{-x}-1\right)}{-x(-x+1)}$

$$
=\lim _{x \rightarrow 0} \frac{e^{-x}-1}{-x} \times \frac{1}{-x+1}=-1
$$

(1) حساب :
$\mathrm{S}_{1}(x)=\mathrm{e}^{0}+\mathrm{e}^{1}+\mathrm{e}^{2}+\ldots+\mathrm{e}^{x}$

$$
. \mathrm{S}_{1}(x)=\frac{1-\mathrm{e}^{x+1}}{1-\mathrm{e}}: \text { : } \mathrm{S}_{1}(x)=1 \times \frac{1-\mathrm{e}^{x+1}}{1-\mathrm{e}}
$$

2) حساب النهاية :
$\lim _{x \rightarrow+\infty} \mathrm{S}_{1}(x)=\lim _{x \rightarrow+\infty} \frac{1}{1-\mathrm{e}} \times\left(1-\mathrm{e}^{x+1}\right)=+\infty$
$S_{2}(x):$: 3 : حساب المجموع (2)
$S_{2}(x)=\mathrm{e}^{-0}+\mathrm{e}^{-1}+\mathrm{e}^{-2}+\ldots+\mathrm{e}^{-x}$
رهو مجموع $x+1$ دا/ من متتالية هناسية أساسها
3) $\lim _{x \rightarrow+\infty}\left(\mathrm{e}^{2 x}-4 x\right)=\lim _{x \rightarrow+\infty} 2 \mathrm{x}\left(\frac{\mathrm{e}^{2 x}}{2 x}-2\right)=+\infty$
4) $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} x \mathrm{e}^{-5 x}=\lim _{x \rightarrow+\infty} \frac{-1}{5}(-5 x) \mathrm{e}^{-5 x}=0$
5) $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x-2}}{x}=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x-2}}{x-2} \times \frac{x-2}{x}=+\infty$
6) $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x}}{x^{3}}=\lim _{x \rightarrow+\infty} \frac{\left(\mathrm{e}^{\frac{1}{3} x}\right)^{3}}{x^{3}}=\lim _{x \rightarrow+\infty}\left(\frac{\mathrm{e}^{\frac{1}{3} x}}{x}\right)^{3}$

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty}\left(\frac{\mathrm{e}^{\frac{1}{3} x}}{3 \times \frac{1}{3} x}\right)^{3}=\lim ^{3}\left(\frac{1}{3} \times \frac{\mathrm{e}^{\frac{1}{3} x}}{\frac{1}{3} x}\right)^{3} \\
& =\lim _{x \rightarrow+\infty}\left(\frac{1}{3}\right)^{3} \times\left(\frac{\mathrm{e}^{\frac{1}{3} x}}{\frac{1}{3} x}\right)^{3}=+\infty
\end{aligned}
$$

8) $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{3 x}-5 x^{3}+2}{x^{3}}=\lim _{x \rightarrow+\infty}\left(\frac{\mathrm{e}^{3 x}}{x^{3}}-5+\frac{2}{x^{3}}\right)$

$$
=\lim _{x \rightarrow+\infty}\left(\frac{\mathrm{e}^{x}}{x}\right)^{3}-5+\frac{2}{x}=+\infty
$$

1) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{4 x}-1}{x}=\lim _{x \rightarrow 0} 4 \times \frac{\mathrm{e}^{4 x}-1}{4 x}=4$
2) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{2 x}-1}{x^{3}}=\lim _{x \rightarrow 0} \frac{2}{x^{2}} \times \frac{\mathrm{e}^{2 x}-1}{(2 x)}=+\infty$

$$
p(n): f^{(n)}(x)=\mathrm{e}^{x}\left[x^{2}+(2 n+1) x+n^{2}+1\right]
$$

$$
p(n+1): f^{(n+1)}(x)=\mathrm{e}^{x}\left[x^{2}+(2 n+3) x+(n+1)^{2}+1\right]
$$

$$
: \text { g } f^{(n+1)}(x)=\left(f^{(n)}\right)^{\prime}(x
$$

$$
\begin{aligned}
f^{(n+1)}(x) & =\mathrm{e}^{x}\left[x^{2}+(2 \mathrm{n}+1) x+\mathrm{n}^{2}+1\right]+(2 x+2 \mathrm{n}+1) \mathrm{e}^{x} \\
& =\mathrm{e}^{x}\left[x^{2}+(2 \mathrm{n}+3) x+\mathrm{n}^{2}+2 \mathrm{n}+1+1\right] \\
& =\mathrm{e}^{x}\left[x^{2}+(2 \mathrm{n}+3) x+(\mathrm{n}+1)^{2}+1\right]
\end{aligned}
$$

ومنه :

$$
f^{(n)}(x)=\mathrm{e}^{x}\left[x^{2}+(2 \mathrm{n}+1) x+\mathrm{n}^{2}+1\right]:
$$

\qquad
الراسة تُغيرات اللّوال :

$$
f(x)=\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}-1}:
$$

- $\mathrm{D}_{f}=\left\{x \in \mathbb{R}: \mathrm{e}^{x}-1 \neq 0\right\}$

$$
x=0: \text { : } e^{x}=\mathrm{e}^{0}: \text { : } e^{x}=1: \text { : } e^{x}-1=0
$$

$$
\left.D_{f}\right]-\infty ; 0[\cup] 0 ;+\infty\left[\quad: \quad D_{f}=\mathbb{R}-\{0\}:\right. \text { : }
$$

$$
\begin{aligned}
& f^{\prime}(x)=(2 x+1) \mathrm{e}^{x}+\left(x^{2}+x+1\right) \mathrm{e}^{x} \\
& f^{\prime}(x)=\left(x^{2}+3 x+2\right) \mathrm{e}^{x} \\
& f^{\prime \prime}(x)=(2 x+3) \mathrm{e}^{x}+\left(x^{2}+3 x+2\right) \mathrm{e}^{x} \\
& f^{\prime \prime}(x)=\left(x^{2}+5 x+5\right) \mathrm{e}^{x} \\
& f^{(3)}(x)=(2 x+5) \mathrm{e}^{x}+\left(x^{2}+5 x+5\right) \mathrm{e}^{x} \\
& f^{(3)}(x)=\left(x^{2}+7 x+10\right) \mathrm{e}^{x} \\
& f^{(n)}(x)=\mathrm{e}^{x}\left[x^{2}+(2 \mathrm{n}+1) x+\mathrm{n}^{2}+1\right]
\end{aligned}
$$

$$
\begin{aligned}
& p(n+1) \text { نرض }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}_{2}(x)=1 \cdot \frac{1-\frac{1}{\mathrm{e}^{x+1}}}{\frac{\mathrm{e}-1}{\mathrm{e}}}: \mathrm{S}_{2}(x)=1 \cdot \frac{1-\left(\frac{1}{\mathrm{e}}\right)^{x+1}}{1-\frac{1}{\mathrm{e}}} \\
& \cdot \mathrm{~S}_{2}(x)=\frac{\mathrm{e}}{\mathrm{e}-1} \times\left(1-\frac{1}{\mathrm{e}^{x+1}}\right):
\end{aligned}
$$

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} \mathrm{S}_{2}(x)=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}}{\mathrm{e}-1} \times\left(1-\frac{1}{\mathrm{e}^{x+1}}\right) \\
=\frac{\mathrm{e}}{\mathrm{e}-1}
\end{gathered}
$$

$$
D_{f}=\mathbb{R}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0} \frac{\frac{\mathrm{e}^{3 x}-\mathrm{e}^{2 x}}{x}}{x} \\
& =\lim _{x \rightarrow 0} \frac{e^{3 x}-e^{2 x}}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{2 x}}{x}\left(\frac{\mathrm{e}^{x}-1}{x}\right)
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{2 x}}{x} \times \frac{\mathrm{e}^{x}-1}{x}=+\infty
$$

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{2 x}}{x} \times \frac{\mathrm{e}^{x}-1}{x}=-\infty
$$

$$
f^{\prime}(x)=\frac{\left(3 \mathrm{e}^{3 x}-2 \mathrm{e}^{2 x}\right) x-\left(\mathrm{e}^{3 x}-\mathrm{e}^{2 x}\right)}{x^{2}}
$$

$$
\text { 2- تييني الالدالة المشتقة من اجبل } x \neq 0
$$

$$
f^{\prime}(x)=\frac{\mathrm{e}^{2 x}\left[\left(3 \mathrm{e}^{x}-2\right) x-\left(\mathrm{e}^{x}-1\right)\right]}{x^{2}}
$$

$$
f(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}
$$

- $\left.D_{f}=\right]-\infty ;+\infty[$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}=-\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}=+\infty$
- $f^{\prime}(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$

x	$-\infty$	$+\infty$
$f^{\prime}(x)$		+
$f(x)$		$+\infty$

- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{x}}{e^{x}-1}=0$

$$
\lim _{x \rightarrow+\infty} \mathrm{f}(\mathrm{x})=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x}}{e^{x}-1}=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x}}{e^{x}\left(1-\frac{1}{\mathrm{e}^{x}}\right)}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{1}{1-e^{-x}}=1
$$

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}}{e^{x}-1}=-\infty
$$

x	$-\infty$	0	${ }^{+\infty}$
$e^{x}-1$	-	i^{+}	+

e^{x}-1 \longrightarrow 0\end{array}\right.\) : لا

$$
\begin{gathered}
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}}{e^{x}-1}=+\infty \\
\left\{\begin{array}{l}
e^{x} \longrightarrow 1 \\
e^{x}-1 \longrightarrow 0
\end{array}:\right.
\end{gathered}
$$

$$
f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x}-1\right)-\mathrm{e}^{x} \cdot \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-1\right)^{2}}=\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x}-1-\mathrm{e}^{x}\right)}{\left(e^{x}-1\right)^{2}}
$$

$$
f^{\prime}(x)=\frac{-\mathrm{e}^{x}}{\left(e^{x}-1\right)^{2}} \quad: \quad \text { ومنه }
$$

وعليه

على كل من المجالين :		
x	$-\infty$	$0 \quad+\infty$
$f^{\prime}(x)$	-	-
$f(x)$	0	$+\infty$

x	$-\infty$	0	1	$+\infty$
$x-1$	-	-	0	+
x	-	0	+	
$f^{\prime}(x)$	+			+

$$
\begin{aligned}
& \text { - } \left.D_{f}=\right]-\infty ; 0[\cup] 0 ;+\infty[\\
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} x \mathrm{e}^{\frac{1}{x}}=-\infty \\
& \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} x \mathrm{e}^{\frac{1}{x}}=+\infty \\
& \lim _{\substack{c \\
x \rightarrow 0}} f(x)=\lim _{\substack{c \\
x \rightarrow 0}} x \mathrm{e}^{\frac{1}{x}}=0 \\
& \lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} f(x)=\lim _{\substack{x \\
x \rightarrow 0}} x \mathrm{e}^{\frac{1}{x}}=\lim _{\substack{>\\
x \rightarrow 0}} \frac{\mathrm{e}^{\frac{1}{x}}}{\frac{1}{x}}=\lim _{z \rightarrow+\infty} \frac{e^{z}}{z}=+\infty \\
& f^{\prime}(x)=1 \cdot \mathrm{e}^{\frac{1}{x}}+\left(\frac{-1}{x^{2}} \mathrm{e}^{\frac{1}{x}}\right) x \\
& f^{\prime}(x)=\mathrm{e}^{\frac{1}{x}}\left(\frac{x-1}{x}\right) \text { : } f^{\prime}(x)=\mathrm{e}^{\frac{1}{x}}\left[1-\frac{1}{x}\right]: \text { : } 9 \\
& \frac{x-1}{x}: \text { لدينا } e^{\frac{1}{x}}>0 \text { ومنه } f^{\prime}(x) \text { لهن نفس إشارة } f^{\prime}
\end{aligned}
$$

$$
f(x)=\frac{e^{x}+2}{1-\mathrm{e}^{x}} \quad: \quad \text { لدينا }
$$

- $D_{f}=\left\{x \in \mathbb{R}: 1-\mathrm{e}^{x} \neq 0\right\}$
$x=0$ ومنه $\mathrm{e}^{x}=1:$: $1-\mathrm{e}^{x}=0$
$\left.D_{f}=\right]-\infty ; 0[\cup] 0 ;+\infty[$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{e^{x}+2}{1-\mathrm{e}^{x}}=2$
- $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{e^{x}\left(1+2 \frac{1}{\mathbf{e}^{x}}\right)}{\mathrm{e}^{x}\left(\frac{1}{\mathrm{e}^{x}}-1\right)}=\lim _{x \rightarrow+\infty} \frac{1+2 \frac{1}{\mathrm{e}^{x}}}{\frac{1}{\mathrm{e}^{x}}-1}=-1$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{e^{x}+2}{1-\mathrm{e}^{x}}=+\infty$

$$
\begin{array}{|c|ccc|}
\hline x & -\infty & 0 & +\infty \\
\hline 1-\mathrm{e}^{x} & + & 0 & - \\
\hline
\end{array} \quad\left\{\begin{array}{l}
e^{x}+2 \longrightarrow 3 \\
1-e^{x} \longrightarrow 0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
e^{x}+2 \longrightarrow 3 \\
1-e^{x} \longrightarrow 0
\end{array} \quad: \text { ن لا } \quad \lim _{\substack{x \\
x \rightarrow 0}} f(x)=\lim _{x \rightarrow 0} \frac{e^{x}+2}{1-\mathrm{e}^{x}}\right.
$$

- $\left.\boldsymbol{D}_{f}=\right]-\infty ;+\infty[$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \mathrm{e}^{|x|}=+\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \mathrm{e}^{|x|}=+\infty$

$$
\left\{\begin{array}{l}
f(x)=\mathrm{e}^{x}, \quad x \geq 0 \\
f(x)=\mathrm{e}^{-x},
\end{array}, x \leq 0.0\right. \text { ومنه }
$$

من أجل - قابلية الاشتقّقاق عند 0 .

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} \frac{e^{x}-1}{x}=1
$$

وعثيه f تقبل الاششتقاق عند 0 من اليمين .

$$
\lim _{\substack{\infty \\ x \rightarrow 0}} \frac{f(x)-f(0)}{x-0}=\lim _{\substack{\sum_{x \rightarrow 0}}} \frac{e^{-x}-1}{x}=\lim _{\substack{<\\ x \rightarrow 0}}(-1) \times \frac{e^{-x}-1}{-x}=-1
$$

وعليه f تقبل الاشتققاق عند 0 من اليسار . ككن الدالة f لا تقّبل الاششتقاق عند 0 .

x	$-\infty$	0			$+\infty$	
$f^{\prime}(x)$		-	-1	1	+	
$f(x)$	$+\infty$					

$$
(x-2)(x+2) \longrightarrow+\infty \quad:+ \text { لان }
$$

- $f^{\prime}(x)=[1 \times(x+2)+1 \times(x-2)] e^{(x-1)(x+2)}$
$f(x)=2 x \cdot e^{(x-2)(x+2)}$

x	$-\infty$	0	$+\infty$	
$2 x$	-	1	+	
$f^{\prime}(x)$	-	0	+	

fمتز ايدة تماما على] [

x	$-\infty$	0	$+\infty$
$f^{\prime}(x)$	-	0	+
$f^{\prime}(x)$	$+\infty$	$+\infty$	

$$
D_{f}=\mathbb{R} \quad: f^{\prime}(x)
$$

-

(1) حساب

$$
f^{\prime}(x)=1+\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{x} \cdot \mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}=1+\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}
$$

و وليه: \mathbb{R} ع ومنه الالدة f متز ايدة تماما على $f^{\prime}(x)>0$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(1-\mathrm{e}^{x}\right)-\left(-\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+2\right)}{\left(1-\mathrm{e}^{x}\right)^{2}} \\
& f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(1-\mathrm{e}^{x}+\mathrm{e}^{x}+2\right)}{\left(1-\mathrm{e}^{x}\right)^{2}}=\frac{3 \mathrm{e}^{x}}{\left(1-\mathrm{e}^{x}\right)^{2}}
\end{aligned}
$$

و وليه 0 ($f^{\prime}(x)$ من أجل كل عدد حقيقي x من f متز ايدة تماما على كل من

$f(x)=\mathrm{e}^{(x-2)(x+2)} \quad$: لاينا

$$
\text { 11) }=]-\infty ;+\infty[
$$

$1 \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} e^{(x-2)(x+2)}=+\infty$

$$
(x-2)(x+2) \longrightarrow+\infty: \text { y }
$$

$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow+\infty} e^{(x-2)(x+2)}=+\infty$
$=\frac{\frac{1}{\mathrm{e}^{x}}}{\frac{1}{e^{x}}+1}+\frac{\mathrm{e}^{x}}{e^{x}+1}=\frac{1}{1+e^{x}}+\frac{\mathrm{e}^{x}}{e^{x}+1}=\frac{\mathrm{e}^{x}+1}{e^{x}+1}=1$
(C) ومنه (C) (C) إنشاء

x	$-\infty$	$+\infty$	
$f^{\prime}(x)$	+		
$f(x)$			$+\infty$

(1) در اسةّ تغيرات الدالة

- $\left.D_{f}=\right]-\infty ;+\infty[$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(x+1-\mathrm{e}^{-x}\right)=-\infty$
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(x+\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1}\right)=-\infty \quad: \quad$: لدينا $(2$
$\lim _{x \rightarrow-\infty}[f(x)-x]=\lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1}=0 \quad: \quad$:
فابن : $y=x$ معادلة مستققم مقارب مائل عند
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(x+\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1}\right)=\lim _{x \rightarrow+\infty}\left(x+\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}\left(1+\frac{1}{\mathrm{e}^{x}}\right)}\right)$

$$
=\lim _{x \rightarrow+\infty}\left(x+\frac{1}{1+\frac{1}{\mathrm{e}^{x}}}\right)=+\infty
$$

4 تبيان أن 1 ب 1 معادلة مستقيم مقارب عند
$\lim _{x \rightarrow+\infty}[f(x)-(x+1)]=\lim _{x \rightarrow+\infty}\left(x+\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1}-x-1\right)$

$$
=\lim _{x \rightarrow+\infty}\left(\frac{-1}{\mathbf{e}^{x}+1}\right)=0
$$

(C) $\cap\left(y^{\prime} y\right)=\{M(x ; y) \in(C): x=0\} \quad: \omega$ تيوين إحداثثي

$$
\omega\left(0 ; \frac{1}{2}\right): f(0)=\frac{1}{2} \text { ولدينا } \quad \text { ومنه }
$$

$$
\beta=\frac{1}{2}, \alpha=0: ح f(2 \alpha-x)+f(x)=2 \beta
$$

$$
\text { أي نبرهن أن : } f(-x)+f(x)=1 \text { لدينا : }
$$

$f(-x)+f(x)=-x+\frac{\mathrm{e}^{-x}}{e^{-x}+1}+x+\frac{\mathrm{e}^{x}}{e^{x}+1}=\frac{\mathrm{e}^{-x}}{e^{x}+1}+\frac{\mathrm{e}^{x}}{e^{x}+1}$

$$
g(0)=4: \text { : تعيين } \mathrm{g} \text { : بحيث }
$$

c=3 $1+\mathrm{c}=4$ ألينا : $\quad g(0)=0+0+1+\mathrm{l}$:

$$
g(x)=\frac{x^{2}}{2}+x+\mathrm{e}^{-x}+3 \quad: \quad: \quad \text { ! }
$$

- $\left.D_{g}=\right]-\infty ;+\infty[$
- $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty}\left(\mathrm{e}^{x}+x+1\right)=-\infty$
$\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty}\left(\mathrm{e}^{x}+x+1\right)=+\infty$
- $g^{\prime}(x)=\mathrm{e}^{x}+1$
\mathbb{R} لاينا

x	$-\infty$		$+\infty$
$g^{\prime}(x)$		+	
$g(x)$		$+\infty$	

2 (2) تبيان أن المعادلة : $-1,28<\alpha<-1,27$
المي المجال [الد l الهة مستمر ة و متز ايدة تماما ولدينا : $g(-1,28)=\mathrm{e}^{-1,28}-0,28 \simeq-0,002$
$g(-1,27)=\mathrm{e}^{-1,27}-0,27 \simeq 0,011$

$$
g(-1,28) \times g(-1,27)<0
$$

$g(\alpha)=0:$ ومنه حسب نظريـة القيم المتوسطة يوجد عدد وحيد α حيث

$$
\alpha \in]-1,28 ;-1 ; 27[9
$$

: \mathbb{R} 3

$$
\begin{aligned}
& g(x)=\mathrm{e}^{x}+x+1 \quad: \quad \text { لاينا }(\mathrm{I} \\
& \text { : و (1) در اسة تغيرات }
\end{aligned}
$$

x	$-\infty$	α	$+\infty$	
$\mathbf{g}(x)$		-		+

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(x+1-e^{-x}\right)=+\infty
$$

- $f^{\prime}(x)=1+\mathrm{e}^{-x}$

x	$-\infty$	$+\infty$	
$f^{\prime}(x)$		+	$+\infty$
$f(x)$		$+\infty$	

2) در اسة الفروع اللالهـهائية و المسنتقيمات المقّاربة : هناك فزرعين لالهـائيين.
$\lim _{x \rightarrow+\infty}[f(x)-(x+1)]=\lim _{x \rightarrow+\infty}\left(-\mathrm{e}^{-x}\right)=0$
و
$\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty} \frac{x+1-\mathrm{e}^{-x}}{x}=\lim _{x \rightarrow-\infty}\left(1+\frac{1}{x}+\frac{\mathrm{e}^{-x}}{-x}\right)=+\infty$

:

$$
f(x)=x+1-\mathrm{e}^{-x}
$$

الدالة f c c ثـبت حقّقي $g(x)=\frac{x^{2}}{2}+x+\mathrm{e}^{-x}+\mathrm{c}$

x	$-\infty$	α	$+\infty$
$f^{\prime}(x)$	-	+	
$f(x)$	$0 \longrightarrow$		

$$
f(\alpha)=\frac{\alpha \mathrm{e}^{x}}{\mathrm{e}^{x}+1}
$$

$$
e^{x}=-\alpha-1 \text { : } e^{x}+\alpha+1=
$$

$$
f(\alpha)=\frac{-\alpha(\alpha+1)}{-\alpha}: \text { ئر } f(\alpha)=\frac{\alpha(-\alpha-1)}{-\alpha-1+1} \text { : }
$$

$$
\text { . } f(\alpha)=\alpha+1 \text { : وبالتالي }
$$

$$
f(\alpha) \text { (استنتاج حصرالـ }
$$

$$
-0,28<f(\alpha)<-0,27 \text { : }
$$

$$
\text { * دراسة الوضعبة النسبية لـ (C) و ((} \mathrm{C} \text {) : }
$$

$$
f(x)-y=\frac{x \mathrm{e}^{x}}{\mathrm{e}^{x}+1}-\frac{1}{2} x=\frac{2 x \mathrm{e}^{x}-x\left(\mathrm{e}^{x}+1\right)}{2\left(\mathrm{e}^{x}+1\right)}=\frac{x\left(\mathrm{e}^{x}-1\right)}{2\left(\mathrm{e}^{x}+1\right)}
$$

$$
\text { لدينا x و (e } x \text { (} e^{x} \text { من نفس الإششارة و عليه : }
$$

 4) تبيان أن المستقّيم الأي معالتّه
$\lim _{x \rightarrow+\infty}[f(x)-x]=\lim _{x \rightarrow+\infty} \frac{x \mathrm{e}^{x}-x\left(\mathrm{e}^{x}+1\right)}{e^{x}+1}=\lim _{x \rightarrow+\infty} \frac{x}{e^{x}+1}$

$$
=\lim \frac{x \mathrm{e}^{x}-x\left(\mathrm{e}^{x}+1\right)}{x}=\lim \frac{-x}{x}
$$

$$
\begin{aligned}
& y=f^{\prime}(0) .(x-0)+f(0) \quad:(\Delta) \text {) م معادلة * (} 3 \\
& f^{\prime}(0)=\frac{2}{2^{2}}=\frac{1}{2} \quad ; f(0)=0
\end{aligned}
$$

$$
\begin{aligned}
& f(\alpha)=\alpha+1 \text { : } 1 \text { : } \\
& g(\alpha)=0 \text { : لدينا }
\end{aligned}
$$

$$
f(x)=\frac{x \mathrm{e}^{x}}{\mathrm{e}^{x}+1} \quad \text { :لاينا (II }
$$

$$
\begin{aligned}
& D_{f}=\mathbb{R}: f^{\prime}(x)=\frac{\mathrm{e}^{x} \cdot \mathrm{~g}(x)}{\left(e^{x}+1\right)^{2}} \\
& f^{\prime}(x)=\frac{\left(\mathrm{e}^{x}+x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{x} \cdot x \mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}} \quad \text { : لاينان انيان }
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{\mathrm{e}^{x}\left[(1+x)\left(\mathrm{e}^{x}+1\right)-x \mathrm{e}^{x}\right]}{\left(\mathrm{e}^{x}+1\right)^{2}}
$$

$$
f^{\prime}(x)=\frac{\mathrm{e}^{x}\left[e^{x}+1+x \mathrm{e}^{x}+x-x \mathrm{e}^{x}\right]}{\left(\mathrm{e}^{x}+1\right)^{2}}=\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x}+x+1\right)}{\left(\mathrm{e}^{x}+1\right)^{2}}
$$

$$
f^{\prime}(x)=\frac{\mathrm{e}^{x} \cdot \mathrm{~g}(x)}{\left(e^{x}+1\right)^{2}}: \text { وباتنالي }
$$

- استنتّاج تيرات الالدالة f :
- $\left.D_{f}=\right]-\infty ;+\infty[$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{x \mathrm{e}^{x}}{e^{x}+1}=0$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{x \mathrm{e}^{x}}{e^{x}+1}=\lim _{x \rightarrow+\infty} \frac{x \mathrm{e}^{x}}{e^{x}\left(1+\frac{1}{\mathrm{e}^{x}}\right)}=\lim _{x \rightarrow+\infty}\left(\frac{x}{1+e^{-x}}\right)=+\infty$
ابشارة

x	$-\infty$	α	
$f^{\prime}(x)$	-	0	+

$$
U_{n}>72 \text { : تعيين عدد السنوات بحبي ـ }
$$

$$
-27 \mathrm{e}^{-0,1 \mathrm{n}}>-8: 80-27 \mathrm{e}^{-01 \mathrm{n}}>72: \text { : }
$$

$$
e^{-0,1 n}<0,3: \text { ي } e^{-0,1 n}<\frac{8}{27}: \dot{u}
$$

$$
n>\frac{-\operatorname{Ln} 0,3}{0,1}: \text { ومنه : } 0,1 n<\operatorname{Ln} 0,3 \text { و منه }
$$

$$
\mathrm{n}=13: \quad \mathrm{n} \text { : } n>12,039
$$

الْن ابتاءاء من 13 سنة يزيد الإتاج 13 عن 72.
3 * * تبيان ان $V_{n+1}=e^{-0,1(n+1)}=e^{-0,1 n-0,1}=e^{-0,1 n} \times e^{-0,1}$

$$
\mathbf{V}_{\mathrm{n}+1}=\mathbf{V}_{\mathrm{n}} \times \mathrm{e}^{-0,1}
$$

$\mathbf{S}=\mathbf{V}_{1} \times \frac{\mathbf{1}-\mathbf{q}^{12}}{\mathbf{1}-\mathbf{q}}=\mathrm{e}^{-0,1} \times \frac{\left.\mathbf{1 - (\mathrm { e } ^ { - 0 , 1 }}\right)^{12}}{1-\mathrm{e}^{-0,1}}$

$$
\text { . S = }=\mathrm{e}^{-0,1} \times \frac{1-\mathrm{e}^{-1,2}}{1-\mathrm{e}^{-0,1}}: \text { منه }
$$

$$
f(-x)+f(x)=2 \text { : 1-1 - تبيان ان }
$$

$$
\text { لدينا : } D_{f}=\mathbb{R}
$$

$f(-x)+f(x)=\frac{3 \mathrm{e}^{-x}-1}{\mathrm{e}^{-x}+1}+\frac{3 \mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}=\frac{\frac{3}{e^{x}}-1}{\frac{1}{e^{x}}+1}+\frac{3 \mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}$

$$
\begin{aligned}
& =27\left[\mathrm{e}^{-0,1 \mathrm{n}}-\mathrm{e}^{-0,1 \mathrm{ln}-0,1}\right]=27 \mathrm{e}^{-0, \ln }\left[1-\mathrm{e}^{-0,1}\right] \\
& U_{n+1}-U_{n}>0: 1-\mathrm{e}^{-0,1} \simeq 0,095 \text { : لابنا : } \\
& \text { و ومنه : ا }
\end{aligned}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{-1}{\frac{\mathrm{e}^{x}}{x}+\frac{1}{x}}=0
$$

(C) ومنه $y=x$ معادلة المستقيم المقارب المانل عثد + (للمنخني
5- إنشاء (C) :

للينا : y=0 معادلة مستنقيم مقارب عثد ه -

: b a a

$$
3 b=\operatorname{Ln} \frac{20}{27}: \text { أي } e^{3 b}=\frac{20}{27}: 27 e^{3 b}=20 \text {) }
$$

$$
\begin{gathered}
f(x)=80-27 \mathrm{e}^{-0,1 x}: \quad \text { و ومند } \\
U_{\mathrm{n}}=80-27 e^{-0,1 n}
\end{gathered}
$$

$$
\text { - تيان ان } \text { ان }) \text { متز ايد تماما : : }
$$

$$
U_{n+1}-\mathrm{U}_{n}=80-27 \mathrm{e}^{-0,1(n+1)}-80+27 \mathrm{e}^{-0,1 \mathrm{n}}
$$

$$
\begin{aligned}
& \mathrm{a}=-27 \text { : } \mathrm{oc} \text { (} 80+\mathrm{a}=53 \text { : } \mathrm{A} \in(\mathrm{C})
\end{aligned}
$$

. استنتاج التتغيرات :
: \mathbb{R} لدينا $f^{\prime}(x)>0$

| x | $-\infty$ | $+\infty$ |
| :---: | :---: | :---: | :---: |
| $f^{\prime}(x)$ | + | |
| $f(x)$ | | |

$$
\begin{array}{cc}
y=f^{\prime}(0) \cdot(x-0)+f(0) & :(\Delta) \text { (4) معادلة الثمماسنا: } 1: \quad f(0)=1
\end{array}
$$

(Δ) الذ

$$
g^{\prime}(x)=-\left(\frac{e^{x}-1}{e^{x}+1}\right)^{2}: \text { تبيان انن }
$$

$$
g^{\prime}(x)=f^{\prime}(x)-1 \quad, \quad D_{f}=\mathbb{R}: د
$$

$g^{\prime}(x)=\frac{4 \mathrm{e}^{x}}{\left(e^{x}+1\right)^{2}}-1=\frac{4 \mathrm{e}^{x}-\left(\mathrm{e}^{x}+1\right)^{2}}{\left(\mathrm{e}^{x}+1\right)^{2}}=\frac{4 \mathrm{e}^{x}-\mathrm{e}^{2 x}-2 \mathrm{e}^{x}-1}{\left(\mathrm{e}^{x}+1\right)^{2}}$

$$
=\frac{-\left(e^{2 x}-2 \mathrm{e}^{x}+1\right)}{\left(2^{x}+1\right)^{2}}=\frac{-\left(\mathrm{e}^{x}-1\right)^{2}}{\left(\mathrm{e}^{x}+1\right)^{2}}=-\left(\frac{e^{x}-1}{e^{x}+1}\right)
$$

. \mathbb{R} وبالتالي الداللة g متناقصة تماما $g^{\prime}(x)<0$
$\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty}[f(x)-(x+1)]=+\infty$
$\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty}[f(x)-(x+1)]=-\infty$

$$
\begin{aligned}
& =\frac{3-\mathrm{e}^{x}}{1+\mathrm{e}^{x}}+\frac{3 \mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}=\frac{3-\mathrm{e}^{x}+3 \mathrm{e}^{x}-1}{\mathrm{e}^{x}+1} \\
& =\frac{2 \mathrm{e}^{x}+2}{\mathrm{e}^{x}+1}=\frac{2\left(\mathrm{e}^{x}+1\right)}{\mathrm{e}^{x}+1} \\
& \quad \cdot f(-x)+f(x)=2: \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& f(2 \times 0-x)+f(x)=2 \times 1 \text { :لدينا : } f(-x)+f(x)=2 \text { ومنهـ } \\
& f(2 \alpha-x)+f(x)=2 \beta \text { و وليه هي من الثككل }
\end{aligned}
$$

2) - حساب النهايات :
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{3 \mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}=-1$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{\mathrm{x}} \times\left(3-\frac{1}{\mathrm{e}^{x}}\right)}{\mathrm{e}^{\mathrm{x}} \times\left(1+\frac{1}{\mathrm{e}^{x}}\right)}=3$

- اسيتنتاج معادلات المستققيمات المقاربة : $\lim _{x \rightarrow-\infty} f(x)=-1$: بما أن فأن :

بما أن : $y=3$: معادلة مستقيم مقارب عغد C : $\lim _{x \rightarrow+\infty} f(x)=3$. 3 -
$f^{\prime}(x)=\frac{3 \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{x}\left(3 \mathrm{e}^{x}-1\right)}{\left(\mathrm{e}^{x}+1\right)^{2}}$
$f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(3 \mathrm{e}^{x}+3-3 \mathrm{e}^{x}+1\right)}{\left(\mathrm{e}^{x}+1\right)^{2}}$
$f^{\prime}(x)=\frac{\mathrm{e}^{x}(4)}{\left(\mathrm{e}^{x}+1\right)^{2}}=\frac{4 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}$
 $f^{\prime}(x)=4\left[\frac{1}{\mathrm{e}^{x}+1}-\frac{1}{\left(\mathrm{e}^{x}+1\right)^{2}}\right] \quad: \quad$ تبيان أن (1-III $4\left(\frac{1}{\mathrm{e}^{x}+1}-\frac{1}{\left(\mathrm{e}^{x}+1\right)^{2}}\right)=4 \times\left[\frac{\mathrm{e}^{x}+1-1}{\left(\mathrm{e}^{x}+1\right)^{2}}\right] \quad:$: $4\left(\frac{1}{\mathrm{e}^{x}+1}-\frac{1}{\left(\mathrm{e}^{x}+1\right)^{2}}\right)=\frac{4 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}=f^{\prime}(x)$ $\left|f^{\prime}(x)\right| \leq \frac{1}{2} \quad:$ ن ن أن $e^{2} \leq \mathrm{e}^{x} \leq \mathrm{e}^{3} \quad: \quad 2 \leq x \leq 3$; Hixil $e^{2}+1 \leq \mathrm{e}^{x}+1 \leq \mathrm{e}^{3}+1:$ $\frac{1}{e^{2}+1} \geq \frac{1}{e^{x}+1} \geq \frac{1}{e^{3}+1}:$ Ney $\frac{4}{e^{3}+1} \leq \frac{4}{e^{x}+1} \leq \frac{4}{e^{2}+1}$; Nes $f^{\prime}(x)=4\left[\frac{1}{\mathrm{e}^{x}+1}-\frac{1}{\left(\mathrm{e}^{x}+1\right)^{2}}\right]$
$\frac{4}{e^{x}+1} \leq \frac{4}{\left(e^{x}+1\right)^{2}} \leq \frac{4}{e^{x}+1}$
$4\left(\frac{4}{e^{x}+1}-\frac{4}{\left(e^{x}+1\right)^{2}}\right) \leq \frac{4}{e^{x}+1}$ $0<f^{\prime}(x) \leq \frac{4}{\mathrm{e}^{x}+1}$:0 $0<f^{\prime}(x) \leq \frac{4}{\mathrm{e}^{x}+1} \leq \frac{4}{\mathrm{e}^{2}+1}$ $\frac{4}{\mathrm{e}^{x}+1} \simeq 0,48 \quad$: نك $0<f^{\prime}(x) \leq \frac{4}{\mathrm{e}^{2}+1}$ $\left|f^{\prime}(x)\right| \leq \frac{1}{2}: 0<f^{\prime}(x) \leq \frac{1}{2}$

| x | $-\infty$ | 0 | $+\infty$ |
| :---: | :---: | :---: | :---: | :---: |
| $g(x)$ | + | 0 | - |

ـ الستنتاج الوضصية النسبية للمنحنى (Г) و (
$f(x)-y=f(x)-(x+1)=g(x)$
ومنه : A ($0 ; 1$) يقطع (
في المجال [0 ; 0)

6) إنشاء (

$$
g(x)=-1 \text { تكافـفي } f(x)=x \text { - II : تبيان أن المعادلة } f(x)
$$

$$
g(x)=-1: \text { : } f(x)=x-(x+1): \text { : } f(x)=x
$$

2) تبيان أن (D) يقطع (
$g(x)=-1$ نحل المعادلة : \quad ألم $f(x)=x$
الدالة $\mathbb{R}^{\text {الدتمرة و متناقصة تماما علما }}$
$\lim _{x \rightarrow+\infty} g(x)=-\infty$, $\lim _{x \rightarrow-\infty} g(x)=+\infty$: حيث ومنه g تقابل من \mathbb{R} نحو \mathbb{R} و عليه المعادلة $g(x)=-1$ تقثل حلا وحيدا. $g(3) \simeq-1,1 \quad$: ولدينا : $g(2) \simeq-0,4 \quad$: $\quad g(2)=f(2)-3$
وبما أن : $2<\alpha<3$: \quad : $3(3)<-1<g(2)$
$x \mapsto \frac{1}{x}:$: هـي الدالة الأصلية التي تنعلدم عند 1 اللد اللة $x \mapsto \ln x$ اللة بر :

$$
\lim _{x \rightarrow+\infty} \ln x=+\infty
$$

$$
\lim _{\substack{x \rightarrow 0}} \ln x=-\infty
$$

$$
\lim _{x \rightarrow 0} \frac{\ln x}{x-1}=1 \quad \text { g } \quad \lim _{x \rightarrow 0} \frac{\ln (x+1)}{x}=1
$$

$$
\lim _{x \rightarrow 0} \frac{\ln x}{x^{n}}=0 ; \mathrm{n} \in \mathbb{N}^{*} \quad \lim _{x \rightarrow 0} \frac{\ln x}{x}=0
$$

$$
\lim _{\substack{x \rightarrow 0}} x^{n} \ln x=0 ; n \in \mathbb{N}^{*} \quad \lim _{\substack{x \\ x \rightarrow 0}} x \ln x=0
$$

nشتقة الدالة :

$$
\text { . } x \mapsto \frac{u^{\prime}(x)}{u(x)} \text { : الدالة }
$$

$$
x \mapsto \frac{2 x}{x^{2}-4} \quad: \quad \text { : }
$$

$$
\text { بير هنة } 5 \text { : }
$$

$$
\mathrm{c} \in \mathbb{R}, x \mapsto \ln (u(x))+\mathrm{c} \quad \text { : }
$$

:

1-3- الدالة اللو غاريتمية الـششريـة :
Log $x \mapsto \frac{\ln x}{\ln 10}$ تسمى الداللة اللو غارتمية العششريةّ و نرمز لها بالرمز اله

$$
\begin{aligned}
& c \in \mathbb{R}, x \mapsto \ln \left(x^{2}-1\right)+c \quad: \quad \text { : }
\end{aligned}
$$

6

1- اللو غاريتم النيبيري لعدد : مبر هنة 1 :
من أجل كل عدد حقيقي a موجب تمـاما يوجد عدد حقيقي وحيد α بحيث : . $\alpha=\ln$ a : العدد : : $e^{\alpha}=\mathbf{a}$ a

نتانـج :
. $\ln 1=0$: بما أن 1 :
. $e^{\ln a}=\mathrm{a}: a$ من أجل كل عدد حقّيقي موجب . ln $\left(e^{a}\right)=a \quad$ a a من أجل كل عدل حقيقي

بمر هنـة 2 :
$\ln (\mathbf{a} \times b)=\ln (\mathbf{a})+\ln (\mathrm{b})$
هن أجل كل عددان حقيقيان موجبان تمامـا a و b
$\ln \frac{2}{3}=\ln 2-\ln 3 \quad * \quad \ln 6=\ln (2 \times 3)=\ln 2+\ln 3 *$ $\ln 16=\ln 2^{4}=4 \ln 2 *$

$$
\ln \frac{1}{5}=-\ln 5 *
$$

$$
\ln \sqrt{2}=\ln 2^{\frac{1}{2}}=\frac{1}{2} \ln 2 *
$$

2- الدالة الثلو غارتمية النيبيرية :

نسمي دالة اللوغ اريتم النيبيري الدالة التي التي ترفق بكل عدد حقيقي In x العدد الحقيقي $] 0 ;+\infty[$

$$
\text { مبر هنة } 3 \text { : }
$$

$$
\begin{aligned}
& \text { نتّانَ } \\
& \ln \left(\frac{1}{a}\right)=-\ln (a) \\
& \text { a } \\
& \ln \left(\frac{\mathrm{a}}{b}\right)=\ln (\mathrm{a})-\ln (\mathrm{b}) \\
& . \ln \mathrm{a}^{r}=\mathrm{r} \ln \mathrm{a} \\
& \text { أمثلة : }
\end{aligned}
$$

$$
\begin{aligned}
& e^{\ln 5}=5 \text { أي أن }
\end{aligned}
$$

()

ضص العلامة ل أماما كل جملة صحيحة و العلامة × أماما كل جما . حيث a و و $\ln (\mathrm{a}+\mathrm{b})=\ln \mathrm{a}+\ln \mathrm{b}$ (1 . حيث a عدد حقيقي موجب تماما $\ln (2 \mathrm{a})=\ln 2+\ln \mathrm{a}(2$ $n \in \mathbb{N}, x \in \mathbb{R}_{+}^{*}:(\ln x)^{n}=n \ln x(3$ من أجل كل عدد حقيقي موجب تماما . $\ln x>0$ (4 . $x \in \mathbb{R}_{+}^{*} \ln \sqrt{x}=\frac{1}{2} \ln x$. حيث $\ln \left(\frac{x}{y}\right)=\frac{\ln x}{\ln y}(6$ 7 الدالة المشثتقة للدالة $x \mapsto \ln 2 x$ ع

$$
\text { هـي الدالة : } x \mapsto \frac{1}{x}
$$

$$
\ln 0=1
$$

$. \ln 2^{2007}=2007 \ln 2$. عدد حقيقي سنالب تماما $x!\ln (-x)=-\ln x$ (10
:

$$
\begin{array}{ccc}
\ln \mathrm{e} \sqrt{\mathrm{e}}+\frac{\ln \mathrm{e}^{4}}{\ln \mathrm{e}^{-2}} & (2 & 4 \ln \sqrt{\mathrm{e}}-5 \ln \left(\mathrm{e}^{3}\right) \\
\ln (100)-\ln (0,0005) & \ln \left(8^{10}\right)+\ln \frac{1}{256}
\end{array}
$$

$$
\ln \left(2 \times 10^{8}\right)-\ln \left(10^{-5}\right)
$$

: المعادلات التالية \mathbb{R} لي

1) $\ln (x+6)+\ln (x+7)=\ln 42$
2) $\ln (x-1)+\ln (x-4)=\ln \left(x^{2}-9\right)$
3) $\ln |x+4|+\ln |x+1|=\ln \left|x^{2}-4\right|$
4) $\ln (2 x-1)-\ln (x+1)=\ln 2 x$
5) $(\ln x)^{2}-7 \ln x+12=0$

$$
\log x=\frac{1}{\ln 10} \ln x: \log x=\frac{\ln x}{\ln 10} \text { إذن : أن }
$$

a و b عددان حقيقيان موجبان تماما r عدد ناطق : $\log (\mathrm{a} \times \mathrm{b})=\log \mathrm{a}+\log \mathrm{b} \quad(1$

$$
\begin{gathered}
\log \frac{a}{b}=\log a-\log b \\
\log a^{r}=r \log a \\
: \log
\end{gathered}
$$

$$
\begin{array}{r}
f(x)=\frac{1}{\ln 10} \times \ln x: \text { نجد } f(x)=\log x: \frac{1}{\text { بوض }} \times \frac{1}{\ln 10} \times \frac{f^{\prime}(x)=\frac{1}{x}}{} .
\end{array}
$$

$$
\text { ومنه : } f^{\prime}(x)>0 \text { عليهـ } f \text { متز ايدة تماما . }
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{\ln 10} \cdot \ln x=-\infty \\
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow+\infty} \frac{1}{\ln 10} \times \ln x=+\infty
\end{aligned}
$$

x	0	$+\infty$
$f^{\prime}(x)$		+
$f(x)$		

6) $\left.f(x)=\ln \left(\frac{x-2}{x+2}\right) ; \mathrm{I}=\right]-\infty ;-2[$
7) $\left.f(x)=(x \ln x)^{2} \quad ; \quad \mathrm{I}=\right] 0 ;+\infty[$
8) $f(x)=\ln (\sin x) ; \mathrm{I}=] 0 ; \pi[$
3) $f(x)=\ln (1+\cos x) ; \mathbf{I}=\mathbb{R}$
10) $\left.f(x)=\ln \left(\frac{e^{x}-1}{e^{x}+1}\right) ; \mathrm{I}=\right] 0 ;+\infty[$

احسب نهايات اللدوال الآتية عند اطر افـ المجال I في كل حالة مما يلي :

1) $\left.f(x)=\frac{-4}{x}+3 \ln x \quad ; \quad \mathrm{I}=\right] 0 ;+\infty[$
2) $\left.g(x)=-x^{2}+2 \ln x \quad ; \quad \mathrm{I}=\right] 0 ;+\infty[$
3) $h(x)=(4-x) \ln x \quad ; \quad \mathrm{I}=] 0 ;+\infty[$
4) $\left.\mathrm{T}(x)=\frac{1}{\ln x} \quad ; \quad \mathrm{I}=\right] 1 ;+\infty[$
5) $\left.\mathrm{S}(x)=\ln \left(\frac{x-1}{x}\right) ; \mathrm{I}=\right] 1 ;+\infty[$
6) $\mathrm{p}(x)=\frac{\ln \left(x^{2}+x+4\right)}{x} ; \quad \mathrm{I}=\mathbb{R}^{*}$
7) $\left.\mathrm{L}(x)=x \ln \left(x^{2}\right) \quad ; \quad \mathrm{I}=\right]-\infty ; 0[$
8) $\mathbf{M}(x)=\sqrt{x} \ln x \quad ; \quad \mathrm{I}=] 0 ;+\infty[$
9) $\mathrm{Q}(x)=\ln (4 x-1)-\ln x \quad ; \quad \mathrm{I}=] \frac{1}{4} ;+\infty[$
10) $\left.\mathrm{R}(\mathrm{x})=\frac{\ln (x+1)}{\ln (x-1)} \quad ; \quad \mathrm{I}=\right] 2 ;+\infty[$

الارس تغير ات كل من الدو ال f المعرفة كما يلي ثم مثلها بآلة بيانية :

1) $f(x)=\ln (1-x)$
2) $f(x)=\ln \left(\frac{2}{x-2}\right)$
3) $\mathbf{1 6 (\operatorname { l n } x) ^ { 2 } = 8 1}$

$\ln 2 x<1 \quad(2 \quad \ln x>-1 \quad(1$ $x \ln x-x<0 \quad(4 \quad \ln (x+3) \geq 4$ $-(\ln x)^{2}+3 \ln x+4 \leq 0 \quad\left(5 \quad, \quad \ln \left(x^{2}\right)-4 \leq 0 \quad(5\right.$ التمرين 5 :
4) $\left\{\begin{array}{l}x^{2}+y^{2}=25 \\ \ln \left(\frac{x}{y}\right)=4\end{array}\right.$
5) $\left\{\begin{array}{l}\ln (x-2)+\ln (y-1)=8 \\ \ln (x-2)-\ln (y-1)=4\end{array}\right.$
6) $\left\{\begin{array}{l}\ln \left(x y^{2}\right)=1 \\ \ln \left(\frac{x}{y}\right)=-4\end{array}\right.$

التمرين 6 :
. A, B, C , D دون اسنتعمال الآلة الحاسبة الرس إشارة كل من

1) $A=5 \ln 7-6 \ln 9$
2) $\mathrm{B}=\frac{1}{2} \ln 5-\ln 3$
3) $\mathrm{C}=\frac{\ln 7}{\ln 11}$
4) $\mathrm{D}=\ln (\sqrt{3}-1)$

ثُم احسب الققيم المقربة إلى 10 10^{-3} لكل منهما باستئعمال آلة حاسبة.

1) $\left.f(x)=-x \ln x+x-\frac{1}{x} \quad ; \quad \mathrm{I}=\right] 0 ;+\infty[$
2) $\left.f(x)=\left(x^{2}-1\right) \ln x+x^{2} \quad ; \mathrm{I}=\right] 0 ;+\infty[$
3) $\left.f(x)=\frac{\ln x}{x} \quad ; \mathrm{I}=\right] 0 ;+\infty[$
4) $\left.f(x)=\ln \left(x^{2}-4\right) \quad ; \mathrm{I}=\right] 2 ;+\infty[$
5) $\left.f(x)=\frac{1}{\ln x} \quad ; \mathrm{I}=\right] 1 ;+\infty[$

I I I لتكن الدالة و المعرفّة عل [
$g(x)=x \ln x-x+1$

1) الدرس تُغيز ات الدالـة g.g. - $2(x)$ (2 الدرس إشارة
(3) (C) (C) التمثيل البياني للثالة (C) (C') يشتركان في نقطتين فاصلتّهنا 1 و e و أنـه من أجل كل عدي
 $f(x)=\frac{1}{x-1} \ln x: 0$ بالمبارة - II 1) الدرس تغير اتث الدالةّ f.
 (1 - III

$$
\text { حيث : 3, } 3,5<\alpha<3,6
$$

$h(x)=\ln x+\frac{1}{2} x+\frac{1}{2}:$ 2

$$
\begin{aligned}
h(x)= & x \text { بين أن } \alpha \text { الداه حلا للمعادلة الدالة } h \text { الدير } h \text { الدير }
\end{aligned}
$$

$$
\left|h^{\prime}(x)\right| \leq \frac{5}{6}: \text { وأن }
$$

3) نعتبر المتتّالية

$$
\left\{\begin{array}{l}
\mathbf{U}_{0}=3 \\
\mathbf{U}_{\mathrm{n}+1}=h\left(\mathbf{U}_{n}\right) \quad, \quad \mathrm{n} \geq 0
\end{array}\right.
$$

$$
\left|\mathbf{U}_{n+1}-\alpha\right| \leq \frac{5}{6}\left|\mathbf{U}_{n}-\alpha\right|
$$

3) $f(x)=\ln |x-4| \quad$ 4) $f(x)=\ln (2 x-4)^{2}$
4) $f(x)=\frac{1}{x}+\ln x$
5) $f(x)=\frac{1}{1-\ln x}$
6) $f(x)=\ln \left|\frac{x-1}{x+1}\right|$
7) $f(x)=\frac{x}{x-1}-\ln |x-1|$

التمرين 10 :
عين على المججال I الدو الل الأصليةٌ لكل دالةّ مما يلي :

1) $\left.f(x)=\frac{1}{x+4}-\frac{1}{x-2} \quad ; \quad \mathrm{I}=\right] 2 ;+\infty[$
2) $\left.f(x)=\frac{1}{x+1}-\frac{1}{3 x+2} \quad ; \quad \mathrm{I}=\right] \frac{-2}{3} ;+\infty[$
3) $f(x)=\frac{x+1}{x^{2}+2 x+5} \quad ; \quad I=\mathbb{R}$
4) $\left.f(x)=\frac{\cos x}{\sin x} \quad ; \quad I=\right] 0 ; \pi[$
5) $\left.f(x)=\frac{\ln x}{x} ; \quad \mathrm{I}=\right] 0 ;+\infty[$
6) $\left.f(x)=\frac{1}{x \ln x} \quad ; \quad \mathrm{I}=\right] 0 ; 1[$
7) $\left.f(x)=\frac{\mathrm{e}^{x}}{e^{x}+1} \quad ; \quad \mathrm{I}=\right]-\infty ;+\infty[$
8) $f(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{e^{x}+\mathrm{e}^{-x}} \quad ; \quad \mathrm{I}=\mathbb{R}$

$$
f(x)=\frac{2 x^{2}-18 x+39}{x^{2}-9 x+20} \quad: \quad: 11 \text { : } 11 \text { التمرئة مـرفة بالعبارة } f
$$

1) عين D مجمو عة تنعريف الدالةّ (2) عين ثاثلة أعداد حقيقية c, b , a

$$
f(x)=a+\frac{b}{x-4}+\frac{c}{x-5} \quad: \text { نكو }
$$

3) عين مجمو عة الدو ال الأصلية للدالةّ f على المجال 4) عين اللد الة الأصلة التّي تنُدلم عند $6=6$

I- التكن f دالة معرفةّ على المجال] [

$$
f(x)=\ln \left(\frac{x+1}{x}\right)-\frac{1}{x+1}
$$

1) الدرس تغير ات اللا الةةf.

$$
\text { 1) احسب }{ }^{\text {احب }} \text { ثم استنتج اتجاه تغير الدالة g . }
$$ 2) لاحظ أن :

$$
h(x)=\frac{\operatorname{Ln}(1+x)}{x}: k(x)=\frac{1}{x}
$$

- استنتج نهايات الدالة g .
- ثم استُتّتج جبول الثتغير ات .

(1) النسبر الادلة العددية g المعرفة على

$$
\begin{aligned}
& f^{\prime}(x)=\frac{g(x)}{x^{3}}: \text { : بين أ } \\
& \text { با الدس تغير ات الدالة }
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=-8 \ln x+x^{2}+4
\end{aligned}
$$

$$
\begin{aligned}
& \text {. Ln (} 1 \\
& \text { 2) بين أن } \\
& \text { 3) بين أن } \text {) (}
\end{aligned}
$$

$$
\left|\mathbf{U}_{n}-\alpha\right| \leq\left(\frac{5}{6}\right)^{n}
$$

$$
\text { c (المتتالية (}{ }_{\text {(}}^{\text {(متقاربة نحو } \alpha \text {. }}
$$

4) عين عدد طبيعي p بحيث مما سبق نستنتج أن للعدد α مبينا قيمة عشرية مقربة إلى 10 10^{-3} للعدد α.
ب) عين إشارة (x(x على]+ [

$$
\text { . } \lim _{x \rightarrow 0} f(x) \text { أحب }
$$

$$
x \rightarrow 0
$$

 جـ) نـرف الدالة F علّى [

$$
\left\{\begin{array}{l}
F(x)=f(x) \quad, x \neq 0 \\
F(0)=0
\end{array}\right.
$$

- الرس قابلية الاشتّقاق للاالة F عند 0 من اليمين .

$$
\text { . } \lim _{x \rightarrow+\infty} f(x) \text { (} 4
$$

$$
\text { ب) ادرس إشارة f(x) - ln على المجال]+ } f 0 \text { [} 0 \text {. }
$$

$$
\text { . } \lim _{x \rightarrow+\infty}[f(x)-\ln x] \text { احسب }
$$

5- ليكن (5 (التمثيل البياتي للالة $x \mapsto \ln x$ أنشّئ في نفس المعلم

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\ln x+x+1}{(x+1)^{2}} \quad \text { : }
\end{aligned}
$$

المنحنيان (Г) و (C) .

$$
f(x)=\ln \left(\frac{x+1}{x}\right)-\frac{1}{x+1}
$$

1) الدرس تغيز ات الدالةة f.

$$
\text { 1) احسب (g' }{ }^{\prime} \text { ثم استتّج اتجاه تغير الالة g . }
$$

$\mathbf{U}_{\mathrm{n}}=\left(\frac{\mathbf{n}+\mathbf{1}}{\mathbf{n}}\right)^{n}$: المتّالية المعرفة على $\mathrm{N}^{\text {(}} \mathrm{U}_{\mathrm{n}}$) بالعبارة
(1)نعُبر الدالة العددية g المعرفة على] $g(x)=-8 \ln x+x^{2}+4$ 1- الدرس تغيرات الالدالة . $g(x)$ (2

$$
\begin{aligned}
& \text {. } f^{\prime}(x)=\frac{g(x)}{x^{3}}: \text { : بين أن } \\
& \text { ب) الدرس تغيرات الدالةّ } f \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } \operatorname{Ln}\left(\mathbf{U}_{n}\right) \text { احسب } \\
& \text { 2) بين أن ((} \\
& \text { 3) بين ان (} \\
& \text { الـدرين } 15 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& h(x)=\frac{\operatorname{Ln}(1+x)}{x} ; \quad k(x)=\frac{1}{x}
\end{aligned}
$$

$$
\left|\mathbf{U}_{\mathrm{n}}-\alpha\right| \leq\left(\frac{5}{6}\right)^{n}
$$

(المتنتالية (

 للـدلد α مبينا قيمة عشرية مقربة إلى 10^{-3} للعدد

$$
\text { (الوحدة (C) ; تمثيلها البياني في معلم متعامد و هتجانس (C) } 4 \text { (C) }
$$

$$
f^{\prime}(x)=\frac{\ln x+x+1}{(x+1)^{2}} \quad \text { بين أن 1 }
$$

$$
\text { ب) عين إشارة (x) على } \mathrm{g} \text {] }
$$

على هاء المجال .

$$
f(\beta)=-\beta \quad \text { ج }
$$

$$
\text { . } \lim _{x \rightarrow 0} f(x) \text { (} 3
$$

ب) هل هل الدالة جـ) نـرف الدالة F على [

$$
F(x)=f(x) \quad, x \neq 0
$$

$$
F(0)=0
$$

ـ ـ الدرس قابلية الاششتقاق ثلـالة F F
. $\lim _{x \rightarrow+\infty} f(x)$ (أ أحسب

$$
\text { ب) ادرس إشارة } f(x)-\ln x \text { على المجال [}
$$

$$
\lim _{x \rightarrow+\infty}[f(x)-\ln x] \text { احسب }
$$

5- ليكن (

$$
f: x \mapsto(\log x)^{2}
$$

－الدس تغيرات الدالة f f ذات المتغير الحقيقي x المعرفة كما يلي ：

$$
f: x \mapsto \log (x-4)(1-x)
$$

－أنشى（C）تمثيلها البيانتي في مستو منسوب إلى معلم متعامد متجانس ．

U0 1－11

1） $4 \ln \sqrt{\mathrm{e}}-5 \ln \left(\mathrm{e}^{3}\right)=4 \ln \mathrm{e}^{\frac{1}{2}}-3 \times 5 \times \ln \mathrm{e}$

$$
\begin{aligned}
= & \frac{1}{2} \times 4 \text { Lne }-15 \times 1 \\
= & 2-15=-13
\end{aligned}
$$

2） $4 \ln \mathrm{e} \sqrt{\mathrm{e}}+\frac{\ln \mathrm{e}^{4}}{\ln \mathrm{e}^{-2}}=\ln \left(\mathrm{e}^{1} \cdot \mathrm{e}^{\frac{1}{2}}\right)+\frac{4 \ln \mathrm{e}}{-2 \ln \mathrm{e}}$

$$
\begin{aligned}
& =\ln \mathrm{e}^{\frac{3}{2}}-\frac{4}{2}=\frac{3}{2} \ln \mathrm{e}-2 \\
& =\frac{3}{2}-2=\frac{-1}{2}
\end{aligned}
$$

$$
\text { 1- الدرس إشارة (x) } \text {. }
$$

2－استنتج الوضنية النسبيبة للمنحنى（C）للالـة f و المنحنى（C）
．$x \mapsto \ln x$ ：للالـة
 4－أنشى（C）و（C） حيث ننشى المماسين للمنحنيين عند الثقطة ذات الفاصلة 1 ． 1

3- ادرس تنغيرات الدالة f .

4
 اللتمرين 17 ：
حل في \mathbb{R} الممعادلات الآتية ：
$\log \left(x^{2}-1\right)=\log x \quad ; \quad \log x+\log (-x+5)=\log 4$
$\log x-\log (x+1)=1$
\qquad التمرين 18 ：
الدرس تثغيرات كل من الدوال الآتية ذات المتنيز الحقيقي X ثم مثلها بيانيا في مستّو منسوب إلى
هـلم هتعامد ：

$$
\begin{gathered}
\cdot f: x \mapsto \log |x| \\
\cdot g: x \mapsto \frac{1-\log x}{x}
\end{gathered}
$$

$$
h: x \mapsto \underline{\log x}
$$

$$
\begin{aligned}
& f(x)=x+3+\ln \frac{|x|+1}{x+2}: 16 \text { : } 16 \text { الـة عددية لمتغنير حقيقي x مصرفة كما يالي } f \\
& \text { 1- عين مجموعة التعريف D للـدالة } \mathrm{D} \text {. }
\end{aligned}
$$

$x \in]-\infty ;-3[\cup] 3 ;+\infty[\quad, \quad x>4 \quad, \quad x>1:$ ي
 $\ln (x-1)(x-4)=\ln \left(x^{2}-9\right):$: $x^{2}-5 x+4=x^{2}-9$: أن $\quad(x-1)(x-4)=x^{2}-9:$ (أن $-5 x=-13$ و وعيه: : $-5 x+4=-9$ وبالثتالي : \quad و $\quad x=\phi=\frac{13}{5}$:
$\ln |x+4|+\ln |x+1|=\ln \left|x^{2}-4\right| \quad$: لدينا $x+1 \neq 0$, $x+4 \neq 0:$: $x \neq 2$, $x \neq-1$, $x \neq-4$: $\quad x^{2}-4 \neq 0$, . $D=\mathbb{R}-\{-4 ;-2 ;-1 ; 2\} \quad: \quad$: $x \neq-2$, $\ln |(x+4)(x+1)|=\ln \left|x^{2}-4\right| \quad:$: $|(x+4)(x+1)|=\left|x^{2}-4\right|:$ (6 $\left|x^{2}+5 x+4\right|=\left|x^{2}-4\right|$:

$$
\left\{\begin{array}{c}
5 x=-8 \\
\text { g } \\
2 x^{2}+5 x=0
\end{array}:\left\{\begin{array}{l}
x^{2}+5 x+4=x^{2}-4 \\
x^{2}+5 x+4=-x^{2}+4
\end{array}\right.\right.
$$

$$
\text { . } x=0 \text {, } x=\frac{-5}{2} \text { of } x=\frac{-8}{5} \text { : वैरह) }
$$

$$
S=\left\{\frac{-5}{2} ; \frac{-8}{5} ; 0\right\} \quad: \quad: \quad \text { لحلحو }
$$

$$
\ln (2 x-1)-\ln (x+1)=\ln 2 x
$$

$2 x-1>0$, $x+1>0$, $x>0:$:

$$
\begin{aligned}
& \text {. } x>\frac{1}{2} \text { : } x>\frac{1}{2} \text {, } x>-1, x>0 \\
& \text {. } D=] \frac{1}{2} ;+\infty[\quad: \quad: \quad \text { : } \\
& \ln \frac{2 x-1}{}=\ln 2 x
\end{aligned}
$$

3) $\ln \left(8^{10}\right)+\ln \left(\frac{1}{256}\right)=10 \cdot \ln 8-\ln (256)$

$$
\begin{aligned}
& =10 \times \ln 2^{3}-\ln 2^{7} \\
& =3 \times 10 \operatorname{Ln} 2-7 \operatorname{Ln} 2 \\
& =30 \operatorname{Ln} 2-7 \operatorname{Ln} 2=23 \operatorname{Ln} 2
\end{aligned}
$$

4) $\ln 100-\ln (0,0005)=\ln 100-\ln \left(5 \times 10^{-4}\right)$

$$
\begin{aligned}
& =\ln \left(2^{2} \times 5^{2}\right)-\left[\ln 5+\ln 10^{-4}\right] \\
& =\ln 2^{2}+\ln 5^{2}-\ln 5-\ln 10^{-4} \\
& =2 \ln 2+2 \ln 5-\ln 5+4 \ln 10
\end{aligned}
$$

$$
\ln 100-\ln (0,0005)=2 \ln 2+\ln 5+4 \cdot[\ln 2+\ln 5]: \text { و منه }
$$

$$
=2 \ln 2+\ln 5+4 \ln 2+4 \ln 5
$$

$$
=6 \ln 2+5 \ln 5
$$

5) $\ln \left(2 \times 10^{8}\right)-\ln \left(10^{-5}\right)=\ln 2+8 \ln 10+5 \ln 10$

$$
\begin{aligned}
& =\ln 2+13 \ln 10 \\
& =\ln 2+13(\ln 2+\ln 5) \\
& =\ln 2+13 \ln 2+13 \ln 5 \\
& =14 \ln 2+13 \ln 5
\end{aligned}
$$

التّمرين 3 : -

$$
\text { وعليه : }(x+6)(x+7)=42)
$$

$$
x^{2}+7 x+6 x+42=42 \quad \text { ومنه : }
$$

$$
x^{2}+13 x=0 \quad \text { أي أن : }
$$

ومنه : ومنه : $\boldsymbol{S}=\{0\}$: مجموعة حول المعادلة

$$
\ln (x-1)+\ln (x-4)=\ln \left(x^{2}-9\right) \text { لدينا : }
$$

$$
\begin{aligned}
& \text { حل المعادلات : } \\
& \ln (x+6)+\ln (x+7)=\ln 42 \quad \text { (1) لدينا } \\
& x+7>0, x+6>0 \text { تكون المعادلة معرفة من أجل : } \\
& x>-7, x>-6 \text { : }
\end{aligned}
$$

$S=] 0 ; \frac{1}{2} e[:$ كلن : $x>0$ و منه مجموعة الحول

$$
\text { ln (} 3 \text { لدينا : } 4 \text {) } 4
$$

 $\ln (x+3) \geq \ln \mathrm{e}^{4}:$:الهتر اجحة تكافئ $x \geq \mathrm{e}^{4}-3$: و و و
 $x \ln x-x<0$: لدينا
. $x>0$. 0 : 0 : المونر اجحة معرفةّة من أجل $x(\ln x-1)<0$: المتراجحة تكافئى

| x | 0 | | e | $+\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x | 0 | + | | + |
| $\ln x-1$ | | - | 0 | + |
| $x(\ln x-1)$ | | - | 0 | + |

$S=]$ e $;+\infty[$: بالتالمي مجمو عة حلول المتراجحة

$$
\ln x^{2}-4 \geq 0 \text { : لدينا }
$$

. $x \neq 0$: 0 : 0 : المتر اجحة مـرفة
$\ln x^{2} \geq \ln \mathrm{e}^{4} \quad$ أي $\quad \ln x^{2} \geq 4:$ الستراجحة تكافئ $|x| \geq \mathrm{e}^{2}: x^{2} \geq \mathrm{e}^{4}:$: $x \leq-e^{2}$ of $x \geq e^{2}:($,
$S=]-\infty ;-\mathrm{e}^{2}[U] \mathrm{e}^{2} ;+\infty[$: :

$$
\begin{align*}
& -(\ln x)^{2}+3 \ln x+4 \leq 0 \quad: \quad \text { : لدينا } \\
& \text { x>0 } 0 \text { : } \\
& -z^{2}+3 z+4 \leq 0: \text { : } \ln x=z: \text { : }
\end{align*}
$$

$z_{2}=4$ g $z_{1}=-1$: $1+4=3$
$x=e^{\mathrm{z}}:$: $-\mathrm{z}^{2}+3 \mathrm{z}+4=-(\mathrm{z}+1)(\mathrm{z}-4):$: C :
$-(\ln x)^{2}+3 \ln x+4=-(\ln x+1)(\ln x-4):(6)$

$$
2 x-1=2 x(x+1): \text { وبالتالي : } \frac{2 x-1}{x+1}=2 x \text { : }
$$

$$
2 x-1=2 x^{2}+2 x
$$

$$
\text { و بالتالي : } 2 x^{2}+1=0 \text { وهي مستحيلة الحل . }
$$

$$
\text { (} 5 \text { لدينا : } 0 \text { = } \ln x)^{2}-7 \ln x+12
$$

$$
\text { تكون معادلة معرفة هن أجل : x>0 } 0 \text {. }
$$

$$
z^{2}-7 z+12=0: \text { نجد } \ln x=z \text { و بوضع }
$$

$$
z_{2}=4 \quad \text { و } \quad z_{1}=3 \quad \text { لدينا : ومنه للمعادلة خلين } \Delta=1
$$

$$
x=e^{3}: \ln x=3: \text { : } \mathrm{z}=3 \text { من أجله }
$$

$$
x=\mathrm{e}^{4} \quad \text { : من اجل } \ln x=4: \text { ومند } \ln x=4
$$

$$
S=\left\{\mathrm{e}^{3} ; \mathrm{e}^{4}\right\}: \text { :مجموع حطول المعادلة }
$$

$$
16(\ln x)^{2}=81 \text { لدينا : } 16
$$

$$
\text { تكون المعادلة معرفة من أجل : } x>0
$$

$$
(\ln x)^{2}=\frac{81}{16}: \text { المعادلة تكافئ }
$$

$$
\ln x=-\frac{9}{4} \text { و } \ln x=\frac{9}{4}: \text { وبالثتالي }
$$

$$
x=\mathrm{e}^{\frac{-9}{4}} \text { وع } \quad \text { وعيه }
$$

$$
\text { مجموع الحلول هي : } S=\left\{\mathrm{e}^{\frac{-9}{4}} ; \mathrm{e}^{\frac{9}{4}}\right\}
$$

التمرين 4 :
حل في $\ln x>-1$: لـدينا
تكون المتراجحة معرفة من أجل : $x>0$
 . $S=] \mathrm{e}^{-1} ;+\infty[$: ومنه مجموعة الحلول
$\ln 2 x<1$:

$$
S=\left\{\left(\frac{5 \mathrm{e}^{4}}{\sqrt{\mathrm{e}^{8}+1}} ; \frac{5}{\sqrt{\mathrm{e}^{8}+1}}\right),\left(\frac{-5 \mathrm{e}^{4}}{\sqrt{\mathrm{e}^{8}+1}} ; \frac{-5}{\sqrt{\mathrm{e}^{8}+1}}\right)\right\}
$$

x	0	e^{-1}		\boldsymbol{e}^{4}	$+\infty$
$\ln x+1$	-	0	+		+
$\ln x-4$	-	-	0	+	
$-(\ln x-1)(\ln x-4)$	-	0	+	0	-

. $\left.S=] 0 ; \mathrm{e}^{-1}\right] \cup\left[e^{4} ;+\infty[: \quad\right.$ منه مجموعة حلول المتراجحة
\qquad
حل في

$$
\left\{\begin{array}{l}
x+y=40 \\
\ln x+\ln y=\ln 300
\end{array}\right.
$$

$$
\text { تكون الجملة معرفة من أجل : } y>0 \text {, } x>0
$$

$$
\left\{\begin{array}{l}
x+y=40 \\
\ln (x y)=\ln 300
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\ln (x-2)+\ln (y-1)=8 \\
\ln (x-2)-\ln (y-1)=4
\end{array}:\right. \text { لدينا }
$$

وعليه :

$$
\text { تكون الجملة معرفة من أجل : } y-1>0 \text {, } x-2>0
$$

$$
y>1, x>2
$$ $\Delta=400$: $\Delta=1600-1200:$: لديينا $\quad z^{2}-40 z+300=0$

إنن للمعادلة حلين :

$$
\text { و بالتالي : }(x ; y)=(30 ; 10)(x ; y)=(10 ; 30)
$$

$$
\text { مجموعة الحلول : } S=\{(10 ; 30) ;(30 ; 10)\} .
$$

$$
x=2+e^{6}: x-2=e^{6}: \ln (x-2)=\ln e^{6}: \text { و } \ln \text { : }
$$

$$
\text { ln }(y-1)=2: \text { : }
$$

$$
y=1+e^{2}: \frac{\text { ا }}{\text { ا }} \text { و منه } \operatorname{~} \ln \left(y-1=e^{2}(y-1)=\ln e^{2}: \psi\right.
$$

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=25 \\
\ln \left(\frac{x}{y}\right)=4
\end{array}\right.
$$

$$
S=\left\{\left(2+\mathrm{e}^{6} ; 1+\mathrm{e}^{2}\right)\right\}: \text { :لحّول مجهوع الحول| }
$$

تكون الجملة معرفة من أجل : $\boldsymbol{x} \boldsymbol{y} \boldsymbol{y} \neq 0$,

$$
\left\{\begin{array}{l}
\ln \left(x y^{2}\right)=1 \\
\ln \left(\frac{x}{y}\right)=-4
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=25 \\
x=y \mathrm{e}^{4}
\end{array}:\left\{\begin{array}{l}
x^{2}+y^{2}=25 \\
\frac{x}{y}=\mathrm{e}^{4}
\end{array}::\right. \text { :لجملة تكافى: }\right.
$$

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ y ^ { 2 } = \frac { 2 5 } { \mathrm { e } ^ { 8 } + 1 } : \text { ومنه } } \\
{ x = y \mathrm { e } ^ { 4 } }
\end{array} \quad \left\{\begin{array}{l}
\left(y e^{4}\right)^{2}+y^{2}=25 \\
x=y \mathrm{e}^{4}
\end{array}\right.\right. \\
& y=\frac{-5}{\sqrt{\mathrm{e}^{8}+1}} \quad \text { و } \quad \text { وبالثنالي } \quad y=\frac{5}{\sqrt{\mathrm{e}^{8}+1}} \\
& x=\frac{5 \mathrm{e}^{4}}{\sqrt{\mathrm{e}^{8}+1}} \quad: \quad y=\frac{5}{\sqrt{\mathrm{e}^{8}+1}} \\
& x=\frac{-5 \mathrm{e}^{4}}{\sqrt{\mathrm{e}^{8}+1}}: \quad y=\frac{-5}{\sqrt{\mathrm{e}^{8}+1}} \text { w } \\
& \text { | }
\end{aligned}
$$

$B \simeq-0,294$
$A \simeq-3,454$
$D \simeq-0,312$
$C \simeq 0,812$

7 التمرين 7
تعيين المشتقات: : $f^{\prime}(x)=-1 \cdot \ln x+(-x) \times \frac{1}{x}+1-\frac{-1}{x^{2}}$
$f^{\prime}(x)=-\ln x-1+1+\frac{1}{x^{2}}$

$$
f^{\prime}(x)=-\ln x+\frac{1}{x^{2}}: \text { ذن }
$$

: $f(x)=\left(x^{2}-1\right) \ln x+x^{2}$: لدينا
$f^{\prime}(x)=2 x \ln x+\left(x^{2}-1\right) \times \frac{1}{x}+2 x$
$f^{\prime}(x)=2 x \ln x+x-\frac{1}{x}+2 x$

$$
f^{\prime}(x)=2 x \ln x+3 x-\frac{1}{x}
$$

$$
f^{\prime}(x)=\frac{2 x}{x^{2}-4} \quad: \quad f(x)=\ln \left(x^{2}-4\right) \quad: \quad \text { ومنه } \quad \text { (} 4 \text {) }
$$

$$
f^{\prime}(x)=\frac{-\frac{1}{x}}{(\ln x)^{2}}: \text { : } f(x)=\frac{1}{\ln x} \quad: \quad \text { : }
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-1 \times \ln x}{x^{2}}: \text { و } \quad f(x)=\frac{\ln x}{x} \quad: \quad \text { : } 3 \\
& f^{\prime}(x)=\frac{1-\ln x}{x^{2}} \quad: \text { ن } \ddagger
\end{aligned}
$$

$$
\text { ومنه : } y>0, x>0,0
$$

$$
\left\{\begin{array}{l}
y \cdot \mathrm{e}^{-4} \times y^{2}=\mathrm{e} \\
x=y \mathrm{e}^{-4}
\end{array}:\left\{\begin{array}{l}
x y^{2}=\mathrm{e} \\
x=y \mathrm{e}^{-4}
\end{array}\right.\right.
$$

$$
\left\{\begin{array}{l}
x=e^{-3} \times \sqrt[3]{e^{2}} \\
y=e \times \sqrt[3]{e^{2}}
\end{array}:\left\{\begin{array}{l}
y^{3}=\mathrm{e}^{5} \\
x=y \mathrm{e}^{-4}
\end{array}:\right. \text { وبالتالي }\right.
$$

$$
S=\left\{\left(\mathrm{e}^{-3} \times \sqrt[3]{\mathrm{e}^{2}} ; \mathrm{e} \times \sqrt[3]{\mathrm{e}^{2}}\right)\right\} \quad: \quad: \quad \text { جموعة الحلول }
$$

التمرين 6 :

* دراسة الإشارة :

$$
5 \ln 7<6 \ln 9: \quad \text { بما نـن : } 1
$$

$$
\text { و بالتالي : } \mathbf{~} \mathbf{~} \text {. }
$$

$$
\mathrm{B}=\ln \sqrt{5}-\ln 3 \quad: \quad \mathrm{B}=\frac{1}{2} \ln 5-\ln 3 \quad \text { أينا }
$$

$$
\ln \sqrt{5}<\ln 3: \text { بما أن : } \quad \text { : فان } 3
$$

$$
\text { و بالتّالي : } \quad \text { أي انن : } \ln \sqrt{5}-\ln 3<0 \text {. }
$$

$$
\mathrm{C}=\frac{\ln 7}{\ln 11} \quad \text { : لدينا }
$$

$$
\frac{\ln 7}{\ln 11}>0 \quad \text { بما أن : } \quad \ln 11>0 \quad, \quad \ln 7>0
$$

D

$$
\text { بما أن : } \ln (\sqrt{3}-1)<\ln 1 \quad \sqrt{3}-1<1 \text { : }
$$

$$
\text { وعليه: } \ln \text { أي ان : } \ln (\sqrt{3}-1)>0
$$

$$
f(x)=\frac{-4}{x}+3 \ln x \quad: \quad \text { (1) لدينا }
$$

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(\frac{-4}{x}+3 \ln x\right)=-\infty
$$

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(\frac{-4}{x}+3 \ln x\right)=+\infty
$$

$$
g(x)=-x^{2}+2 \ln x \quad: \quad \text { لدينا }
$$

$\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}\left(-x^{2}+2 \ln x\right)=-\infty$ ومنه :
$\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty}\left(-x^{2}+2 \ln x\right)$
$=\lim _{x \rightarrow+\infty}\left(-x+\frac{2 \ln x}{x}\right)=-\infty$
$h(x)=(4-x) \ln x \quad: \quad$: لدينا
$\lim _{x \rightarrow 0} h(x)=\lim _{x \rightarrow 0}(4-x) \ln x=-\infty$
و ومذه :
$\lim _{x \rightarrow+\infty} h(x)=\lim _{x \rightarrow+\infty}(4-x) \ln x=-\infty$

$$
T(x)=\frac{1}{L n x} \quad \text { لاينا }
$$

$\lim _{x \rightarrow 1} \mathrm{~T}(x)=\lim _{x \rightarrow 1} \frac{1}{\ln x}=+\infty$
ومنه :
$\lim _{x \rightarrow+\infty} \mathrm{T}(x)=\lim _{x \rightarrow+\infty} \frac{1}{\ln x}=0$

$$
S(x)=\ln \left(\frac{x-1}{x}\right): \text { (5 }
$$

$\lim _{x \rightarrow 1} S(x)=\lim _{x \rightarrow 1} \ln \left(\frac{x-1}{x}\right)=-\infty$:
$\lim _{x \rightarrow+\infty} S(x)=\lim _{x \rightarrow+\infty} \operatorname{Ln}\left(\frac{x-1}{x}\right)=0$

$$
f^{\prime}(x)=\frac{2 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)\left(\mathrm{e}^{x}-1\right)}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{-1}{x(\ln x)^{2}} \\
& f(x)=\ln \left(\frac{x-2}{x+2}\right) \quad \text { لدينا } 6 \\
& f(x)=\ln |x-2|-\ln |x+2|: \text { ي } \\
& f^{\prime}(x)=\frac{4}{(x-2)(x+2)}: \text { : } f^{\prime}(x)=\frac{1}{x-2}-\frac{1}{x+2}: \text { م منه } \\
& \text { 7 } \\
& f^{\prime}(x)=2(x \ln x)\left(1 \times \ln x+x \times \frac{1}{x}\right) \\
& \text {. } f^{\prime}(x)=2(x \ln x)(1+\ln x) \quad: \quad: \\
& \text { • } f^{\prime}(x)=\frac{\cos x}{\sin x} \quad: \quad \text { : } f(x)=\ln (\sin x) \quad: \quad \text { : لدينا } \\
& f^{\prime}(x)=\frac{-\sin x}{1+\cos x} \quad: \quad \text { ومنـ } f(x)=\ln (1+\cos x) \quad: \quad \text { (9) } \\
& \text { : } 10 \\
& f^{\prime}(x)=\frac{\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{x}\left(\mathrm{e}^{x}-1\right)}{\left(\mathrm{e}^{x}+1\right)^{2}}}{\frac{\mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}} \\
& f^{\prime}(x)=\frac{2 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}} \times \frac{\mathrm{e}^{x}+1}{\mathrm{e}^{x}-1}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0} 2(\sqrt{x}) \ln (\sqrt{x})=0
$$

$\lim _{x \rightarrow+\infty} \mathbf{M}(x)=\lim _{x \rightarrow+\infty} 2(\sqrt{x}) \ln (\sqrt{x})=+\infty \quad: \quad:$ بالمثل

$$
\text { Q(x) }=\ln (4 x-1)-\ln x \quad \text { لدينا }
$$

$$
\lim _{\substack{x \rightarrow \frac{1}{4}}} Q(x)=\lim _{\substack{x \rightarrow \frac{1}{4}}}[\ln (4 x-1)-\ln x]=-\infty
$$

$\lim _{x \rightarrow+\infty} Q(x)=\lim _{x \rightarrow+\infty} \ln \left(\frac{4 x-1}{x}\right)$

$$
=\lim _{x \rightarrow+\infty} \ln \left(4-\frac{1}{x}\right)=\ln 4
$$

$$
\mathrm{R}(x)=\frac{\ln (x+1)}{\ln (x-1)} \quad \text { 10 لدينا }
$$

$$
\lim _{\substack{x \rightarrow 2 \\ x \rightarrow 2}} \mathrm{R}(x)=\lim _{\substack{x \rightarrow 2 \\ x \rightarrow 2}} \frac{\ln (x+1)}{\ln (x-1)}=+\infty
$$

$$
\lim _{x \rightarrow+\infty} \mathrm{R}(x)=\lim _{x \rightarrow+\infty}\left(\frac{\operatorname{Ln}(x+1)}{\operatorname{Ln}(x-1)}-1+1\right)
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow+\infty}\left(\frac{\ln (x+1)-\ln (x-1)}{\ln (x-1)}+1\right) \\
& =\lim _{x \rightarrow+\infty}\left(\frac{\ln \left(\frac{x+1}{x-1}\right)}{\ln (x-1)}+1\right)=1
\end{aligned}
$$

دارسة اتجاه تغير الدوال :

$$
f(x)=\ln (1-x) \text { : } 1
$$

$$
D_{f}=\{x \in \mathbb{R}: 1-x>0\} \quad: \quad \text { : }
$$

$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \ln (1-x)=+\infty$

$$
p(x)=\frac{\ln \left(x^{2}+x+4\right)}{x} \quad \text { (6) لدينا }
$$

$$
\lim _{x \rightarrow-\infty} \mathrm{p}(x)=\lim _{x \rightarrow-\infty} \frac{\ln \left(x^{2}+x+4\right)}{x} \quad: \quad \text { و منه }
$$

$$
\lim _{x \rightarrow-\infty} \mathrm{p}(x)=\lim _{x \rightarrow-\infty} \frac{\ln \left[x^{2}\left(1+\frac{1}{x}+\frac{4}{x^{2}}\right)\right]}{x} \quad: \quad \text { و }
$$

$$
=\lim _{x \rightarrow-\infty} \frac{\ln x^{2}+\ln \left(1+\frac{1}{x}+\frac{4}{x^{2}}\right)}{x}
$$

$$
=\lim _{x \rightarrow-\infty}\left(\frac{2 \ln |x|}{x}+\frac{\ln \left(1+\frac{1}{x}+\frac{4}{x^{2}}\right)}{x}\right)
$$

$$
=\lim _{x \rightarrow-\infty}\left[\frac{-2 \ln (-x)}{-x}+\frac{1}{x} \ln \left(1+\frac{1}{x}+\frac{4}{x^{2}}\right)\right]=0
$$

و بالمثّل نجـ :
$\lim _{x \rightarrow+\infty} \mathrm{p}(x)=\lim _{x \rightarrow+\infty}\left[\frac{2 \ln (x)}{x}+\frac{1}{x} \ln \left(1+\frac{1}{x}+\frac{4}{x^{2}}\right)\right]=0$
: $\mathbf{L}(x)=2 x \ln |x|$: $\quad \mathbf{L}(x)=x \ln \left(x^{2}\right) \quad$: لاينا
$\lim _{x \rightarrow-\infty} \mathrm{L}(x)=\lim _{x \rightarrow-\infty} 2 \times \ln (-x)=-\infty$
$\lim _{\substack{c \\ x \rightarrow 0}} \mathrm{~L}(x)=\lim _{\substack{c \\ x \rightarrow 0}} 2 x \operatorname{Ln}(-x)$
$=\lim _{x \rightarrow 0}(-2)(-x) \ln (-x)[]=0$

$$
M(x)=\sqrt{x} \ln x
$$

8) لاينا :

$$
\begin{aligned}
\lim _{x \rightarrow 0} \mathbf{M}(x) & =\lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} \sqrt{x} \operatorname{Ln} x \\
& =\lim _{x \rightarrow 0} \sqrt{x} \ln (\sqrt{x})^{2}
\end{aligned}
$$

$$
\text { . } \left.D_{f}=\right] 2 ;+\infty[\text { بذن }
$$ - صساب النهايات :

$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \ln \left(\frac{2}{x-2}\right)=+\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \ln \left(\frac{2}{x-2}\right)=-\infty$

$$
f^{\prime}(x)=\frac{\frac{-2}{(x-2)^{2}}}{\frac{2}{x-2}}=\frac{-2}{(x-2)^{2}} \times \frac{x-2}{2}
$$

$$
f^{\prime}(x)=\frac{-1}{x-2}
$$

وعليه :

x	2	$:$
$f^{\prime}(x)$		
$f(x)$	$+\infty$	

$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \ln (1-x)=-\infty$

$$
f(x)=\ln \left(\frac{2}{x-2}\right): \text { (2 لدينا }
$$

$$
D_{f}=\{x \in \mathbb{R}: x-2>0\} \text { : مجموعة التُعريف : }
$$

$$
f(x)=2 \ln |2 x-4|: \quad \text { أينا }
$$

$$
D_{f}=\{x \in \mathbb{R}: 2 x-4 \neq 0\} \quad \text { • مجموعة التثريف : }
$$

$$
\left.D_{f}=\right]-\infty ; 2[U] 2 ;+\infty[: \text { is } g
$$

حسـاب اللنهايـات :
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} 2 \ln |2 x-4|=+\infty$
$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} 2 \ln |2 x-4|=-\infty$
$\lim _{\substack{x \rightarrow 2}} f(x)=\lim _{\substack{x \rightarrow 2 \\ x \rightarrow 2}} 2 \ln |2 x-4|=-\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} 2 \ln |2 x-4|=+\infty$
$f^{\prime}(x)=\frac{2}{x-2}$: تعيين المشثّق : $f^{\prime}(x)=2 \times \frac{2}{2 x-4}$ من أجل $f^{\prime}(x)>0: x>2$ وعلية f متز ايدة تماما . من أجل جدول التغيّيات :

x	$-\infty$	2		$+\infty$
$f^{\prime}(x)$		-	+	
$f(x)$	$+\infty$			
$+\infty$		$+\infty$		

التمثيل البيائي :

$$
f(x)=\ln |x-4| \quad: \quad \text { (3) لدينا }
$$

$$
D_{f}=\{x \in \mathbb{R}: x-4 \neq 0\}: \text { مجموعة التنريف }
$$

$$
\text { و بالتّلي : } \left.D_{f}=\right]-\infty ; 4[U] 4 ;+\infty[4
$$

-

$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \ln |x-4|=+\infty$
$\lim _{x \rightarrow 4} f(x)=\underset{x \rightarrow 4}{\lim } \ln |x-4|=-\infty$
$\lim _{\substack{>\\ x \rightarrow 4}} f(x)=\lim _{\substack{>\\ x \rightarrow 4}} \ln |x-4|=-\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \ln |x-4|=+\infty$

$$
f^{\prime}(x)=\frac{1}{x-4} \quad: \text { تعيين المشتق }
$$

من أجل $f^{\prime}(x)>0: x>4$ وعليه f متز ايدة تماما . f^{\prime}.
هن أجل $f^{\prime}(x)<0: x<4$ و

x	$-\infty$	4	
$f^{\prime}(x)$		-	$+\infty$
$f(x)$	$+\infty$	$\longrightarrow-\infty$	

التمثيل اللبياني :

$\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} f(x)=\lim _{x \rightarrow 0} \frac{1}{1-\ln x}=0$
$\lim _{x \rightarrow e} f(x)=\lim _{x \rightarrow e} \frac{1}{1-\ln x}=+\infty$
$\lim _{x \rightarrow e} f(x)=\lim _{x \rightarrow e} \frac{1}{1-\ln x}=-\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{1}{1-\ln x}=0$

$$
f^{\prime}(x)=\frac{\frac{1}{x}}{(1-\operatorname{Ln} x)^{2}}=\frac{1}{x(1-\operatorname{Ln} x)^{2}}: \text { تعيين المشتق }
$$

و وليه : 0 و $f^{\prime}(x)$ ومنه f متز ايدة تماما على كل من المجالين : $] e ;+\infty[\mathrm{g}] 0 ; \mathrm{e}[$

$$
f(x)=\ln \left|\frac{x-1}{x+1}\right| \quad: \begin{aligned}
& \text { (7ينا }
\end{aligned}
$$

$$
D_{f}=\left\{x \in \mathbb{R}: \frac{x-1}{x+1} \neq 0 ; x+1 \neq 0\right\}: \text { مجموعة التعريف: }
$$

$$
f(x)=\frac{1}{x}+\ln x \quad: \quad \text { (5 }
$$

$$
\left.D_{f}=\right] 0 ;+\infty[\text { : بجوعة التعريف : . }
$$

$\lim _{x \rightarrow 0} f(x)=\lim _{\substack{\rightarrow \\ x \rightarrow 0}}\left(\frac{1}{x}+\ln x\right)=\lim _{\substack{x \\ x \rightarrow 0}} \frac{1+x \ln x}{x}=+\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(\frac{1}{x}+\ln x\right)=+\infty$

$$
f^{\prime}(x)=\frac{-1+x}{x^{2}}: \text { تعيين المشتقق }
$$

$$
f^{\prime}(x)=0: x=1 \text { من أجل }
$$

من أجل من أجل

x	$-\infty$	1		$+\infty$
$f^{\prime}(x)$		-	+	
$f(x)$	$+\infty$			

$f(x)=\frac{1}{1-\ln x}$
6
$D_{f}=\{x \in \mathbb{R}: 1-\ln x \neq 0 ; x>0\}:$: مجموعة التنريف 0 • $x=$ e : ومنه $\ln x=1$: $1-\ln x=0$
$\left.D_{f}=\right] 0 ; \mathrm{e}[\cup] e ;+\infty[:]$

$f(x)=\frac{x}{x-1}-\ln |x-1| \quad: \quad$ (8) لدينا $D_{f}=\{x \in \mathbb{R}: x-1 \neq 0\}$: مجموعة التعريف $\left.D_{f}=\right]-\infty ; 1[\cup] 1 ;+\infty[: 1$ و

حساب النهايات :

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty}\left(\frac{x}{x-1}-\operatorname{Ln}|x-1|\right)=-\infty \\
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\ln (-x+1)\right) \\
& =\lim _{\substack{x \\
x \rightarrow 1}} \frac{x-(x-1) \ln (-x+1)}{x-1}
\end{aligned}
$$

و منه :

$$
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x+(1-x) \ln (1-x)}{x-1}=-\infty
$$

$$
\lim _{\substack{x \rightarrow 1 \\ x \rightarrow 1}} f(x)=\lim _{\substack{x \rightarrow 1 \\ x \rightarrow 1}} \frac{x-(x-1) \ln (x-1)}{x-1}=+\infty
$$

$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(\frac{x}{x-1}-\ln (x-1)\right)=-\infty$

$$
f^{\prime}(x)=\frac{1(x-1)-1(x)}{(x-1)^{2}}-\frac{1}{x-1}=\frac{-1}{(x-1)^{2}}-\frac{1}{x-1}=\frac{-1-(x-1)}{(x-1)^{2}}
$$

$x \neq-1$, $x \neq 1$: . $\left.D_{f}=\right]-\infty ;-1[\cup]-1 ; 1[\cup] 1 ;+\infty[\quad:$
-$\left(\frac{x-1}{x+1}\right) \longrightarrow 1: \begin{aligned} & \text { لأن }\end{aligned} \quad \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \ln \left|\frac{x-1}{x+1}\right|=0$ $\left|\frac{x-1}{x+1}\right| \longrightarrow+\infty \quad: \quad$: $ل \lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \ln \left|\frac{x-1}{x+1}\right|=+\infty$ $\left|\frac{x-1}{x+1}\right| \longrightarrow+\infty \quad$: لأن $: \lim _{\substack{\rightarrow \\ x \rightarrow-1}} f(x)=\lim _{\substack{\rightarrow \\ x \rightarrow-1}} \ln \left|\frac{x-1}{x+1}\right|=+\infty$ $\left|\frac{x-1}{x+1}\right| \longrightarrow 0$: لا $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \ln \left|\frac{x-1}{x+1}\right|=-\infty$ $\left|\frac{x-1}{x+1}\right|>0$: $: \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \ln \left|\frac{x-1}{x+1}\right|=-\infty$ $\left(\frac{x-1}{x+1}\right) \longrightarrow 1$: لا $\int \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \ln \left|\frac{x-1}{x+1}\right|=0$ $f(x)=\ln |x-1|-\ln |x+1| \quad$ لدينا $f^{\prime}(x)=\frac{2}{(x+1)(x-1)} \quad$: $f^{\prime}(x)=\frac{1}{x-1}-\frac{1}{x+1}:$,

$$
\begin{aligned}
& f(x)=\frac{1}{x+1}-\frac{1}{3} \times \frac{3}{3 x+2} \\
& g(x)=\ln (x+1)-\frac{1}{3} \ln (3 x+2)+c \quad: \quad \text { ب بالتالي } \\
& f(x)=\frac{x+1}{x^{2}+2 x+5} \quad \text { (لدينا } \\
& f(x)=\frac{1}{2} \times \frac{2 x+2}{x^{2}+2 x+5} \\
& g(x)=\frac{1}{2} \ln \left(x^{2}+2 x+5\right)+c \quad: \quad \text { و باتّالي } \\
& f(x)=\frac{\cos x}{\sin x} \\
& . g(x)=\ln (\sin x)+\mathrm{c} \\
& f(x)=\frac{1}{x} \times(\ln x)^{1}: f(x)=\frac{\ln x}{x} \quad \text { : للاينا } \\
& g(x)=\frac{(\ln x)^{2}}{2}+\mathrm{c} \quad: \quad \text { g } \\
& f(x)=\frac{\frac{1}{x}}{\ln x} \\
& : \text { : } f(x)=\frac{1}{x \ln x} \\
& g(x)=\ln |\ln x|+c \quad \text { c } \\
& g(x)=\ln (-\ln x)+\mathrm{c} \quad \text { : وبـا أن : } \quad \mathrm{I}=] 0 ; 1[\text { : } \\
& f(x)=\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1} \\
& g(x)=\ln \left(\mathrm{e}^{x}+1\right)+\mathrm{c} \quad \text { و } \\
& f(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}} \quad: \quad \text { : }(8 \\
& g(x)=\ln \left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)+C \quad: \quad \text { : }
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{-x}{(x-1)^{2}} \quad: \dot{j}
$$

x	$-\infty$	0	1	$+\infty$		
$f^{\prime}(x)$	+	0	-		-	
$f(x)$		$\rightarrow 0$		$+\infty$		

$$
\text { الثتمرين } 10 \text { : }
$$

تُعيين الاو ال الأصلية g لكل دالةة f وليكن

$$
\begin{aligned}
& f(x)=\frac{1}{x+4}-\frac{1}{x-2}: 1 \\
& -2)+c
\end{aligned}
$$

$$
g(x)=\ln (x+4)-\ln (x-2)+c
$$

$$
\begin{aligned}
& g(x)=\ln \left(\frac{x+4}{x-2}\right)+c \\
& f(x)=\frac{1}{x+1}-\frac{1}{3 x+2} \quad: \quad: \quad \text { : أي } 2
\end{aligned}
$$

ومنه : $\quad g(x)=2 x+\ln \left(\frac{x-4}{x-5}\right)+c \quad$ حيث c ثابت حقيقي .

$$
\text { 4) تُيين اللالة الأصلية التي تنّعدم عند } 6 \text { : }
$$

$$
g(6)=0 \text { : وبما أن } g(x)=2 x+\ln \left(\frac{x-4}{x-5}\right)+c
$$

$$
12+\ln 2+\mathrm{c}=0 \quad: \quad 12+\ln \left(\frac{2}{1}\right)+\mathrm{c}=0 \quad: \quad \text { u }
$$

$$
c=-12-\ln 2:
$$

$$
g(x)=2 x+\ln \left(\frac{x-4}{x-5}\right)-12-\operatorname{Ln} 2
$$

التمرين 12 :
: g د د السة تفيرات الدالة 1 I
مجموعة التعريف :

النهايات :

x	0	1		$+\infty$
$\ln x$		-	0	+
$g^{\prime}(x)$		-	0	+

ومنه

ومنـه الدالة g متز ايدةٌ تماما على المجال] [1 [1]

$$
\begin{aligned}
& \lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}(x \ln x-x+1)=1 \\
& \lim _{x \rightarrow+\infty} \mathrm{g}(x)=\lim _{x \rightarrow+\infty}(x \ln x-x+1) \\
& =\lim _{x \rightarrow+\infty} x\left(\ln x-1+\frac{1}{x}\right)=+\infty \\
& g^{\prime}(x)=1 \cdot \ln x+x \cdot \frac{1}{x}-1=\ln x+1-1=\ln x \quad: \quad \text { المشتق و إشارته }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{2 x^{2}-18 x+39}{x^{2}-9 x+20} \\
& D=\left\{x \in \mathbb{R}: x^{2}-9 x+20 \neq 0\right\} \quad: \text { مجموعة التعريف } \\
& x^{2}-9 x+20=0 \text { : نحل المعادلة } \\
& \text { لـدينا : } x_{2}=5 \text { و } x_{1}=4: \text { : } \Delta=1 \text { : للمعادلة حلين } \\
& D_{f}=\mathbb{R}-\{4 ; 5\} \quad: \quad \text { ومنه } \\
& \text { : c , b , a } \\
& f(x)=a+\frac{b}{x-4}+\frac{c}{x-5} \\
& \text { لاينا : }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
a=2 \\
b+c=0 \\
-5 b-4 c=-1
\end{array} \quad: \quad\left\{\begin{array}{l}
a=2 \\
-9 a+b+c=-18 \\
20 a-5 b-4 c=39
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ a = 2 } \\
{ b = + 1 } \\
{ c = - 1 }
\end{array} \quad : \text { أي } \quad \text { أن } \quad \left\{\begin{array}{l}
a=2 \\
b=-c \\
c=-1
\end{array}\right.\right. \\
& f(x)=2+\frac{1}{x-4}-\frac{1}{x-5} \quad: \quad \text { وعليه } \\
& \text { 3) تعيين مجموعة الدوال الأصلية و لتكن g : } \\
& f(x)=2+\frac{1}{x-4}-\frac{1}{x-5} \quad: \quad \text { لدينا }
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{x-1} \ln x=+\infty \\
& \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{1}{x-1} \ln x=\lim _{x \rightarrow 1} \frac{\ln x}{x-1} \\
& \text { ونضع } \\
& \lim _{z \rightarrow 1} f(x)=\lim _{z \rightarrow 1} \frac{\ln (1+z)}{z}=1 \\
& \lim _{z \rightarrow 1} f(x)=\lim _{z \rightarrow 1} \frac{\ln (1+z)}{z}=1 \\
& \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{1}{x-1} \ln x=\lim _{x \rightarrow+\infty} \frac{x}{x-1} \times \frac{\ln x}{x} \\
& =0 \\
& \text { المشُتّق و إشارته : } \\
& f(x)=\frac{\ln x}{x-1} \quad \text { :لادينا } \\
& f^{\prime}(x)=\frac{\frac{1}{x}(x-1)-\ln x}{(x-1)^{2}}=\frac{x-1-x \ln x}{x(x-1)^{2}} \\
& f^{\prime}(x)=\frac{-(x \ln x-x+1)}{x(x-1)^{2}}=\frac{-g(x)}{x(x-1)^{2}}
\end{aligned}
$$

 إذن جدول التّغير ات هو :

x	0	1					$+\infty$
$f^{\prime}(x)$		-					
$f(x)$	$+\infty$		1				

| x | 0 | 1 | $+\infty$ |
| :---: | :---: | :---: | :---: | :---: |
| $g^{\prime}(x)$ | | 0 | + |
| $g(x)$ | \longrightarrow | 0 | $+\infty$ |

$$
g(1)=1 \cdot \ln 1-1+1=0
$$

$$
\text { 2) در اسة إشثارة } g(x):
$$

 $g(x)>0:] 0 ; 1[\cup] 1 ;+\infty[$ من أجل كل عدد حقيقي x من

x	0		1		$+\infty$
$g(x)$		+	0	+	

إذن : (C)

$$
x \ln x-x+1 \leq \ln x: 3
$$

$(x-1)(\ln x-1) \leq 0 \leq 0: 0$:

| x | 0 | 1 | e | | | $+\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x-1$ | | - | 0 | + | | + |
| $\ln x-1$ | | + | | - | 0 | + |
| $(x-1)(\ln x-1)$ | | + | 0 | - | 0 | + |

$$
\begin{aligned}
& (x-1)(\ln x-1) \leq 0: x \in[1 ; e] \text { g } 0 \text { : } \\
& x \ln x-x+1 \leq \ln x \text { أي } \\
& f(x)=\frac{1}{x-1} \ln x \quad: f \text { (1-II }
\end{aligned}
$$

$$
\begin{aligned}
& (x-1)(\ln x-1)=0 \text { : }(x-1) \ln x-(x-1)=0 \text { : } \\
& \ln x-1=0 \text { و و و و و و إما } x-1=0 \text { وأه }
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } g(e)=1 \quad, \quad g(1)=0 \quad \text { لدينا }
\end{aligned}
$$

$$
\begin{aligned}
& \left.g(x)=\operatorname{Ln} x:\left(C^{\prime}\right) \text { (C) (}\right) \text { (} \\
& x \ln x-x+1=\ln x \quad \text { ومنه }
\end{aligned}
$$

$h^{\prime}(x)=\frac{1}{x}+\frac{1}{2}=\frac{2+x}{2 x}$

$$
\text { تبيان أن : } h(x) \in I
$$

$$
\ln 3 \leq \ln x \leq \ln 4: \text { لدينا : } 3 \leq x \leq 4 \text { ومنه }
$$

$$
\frac{3}{2} \leq \frac{1}{2} x \leq 2
$$

$\ln 3+\frac{3}{2}+\frac{1}{2} \leq \ln x+\frac{1}{2} x+\frac{1}{2} \leq \ln 4+2+\frac{1}{2}$

$$
\ln 3+2 \leq h(x) \leq \ln 4+\frac{5}{2}:
$$

$$
\text { 3,09 } \leq h(x) \leq 3,89: \text { : }
$$

$$
h(x) \in I: \text { : } 3 \leq h(x) \leq 4
$$

$$
\left|h^{\prime}(x)\right| \leq \frac{5}{6}: \text { تبيان أن }
$$

$\frac{1}{4} \leq \frac{1}{x} \leq \frac{1}{3}: 3 \leq x \leq 4$, $h^{\prime}(x)=\frac{1}{x}+\frac{1}{2}$: 3 : ومنه $\frac{1}{4}+\frac{1}{2} \leq \frac{1}{x}+\frac{1}{2} \leq \frac{1}{3}+\frac{1}{2}$

$$
\left|h^{\prime}(x)\right| \leq \frac{5}{6} \quad: \quad \frac{3}{4} \leq h^{\prime}(x) \leq \frac{5}{6}
$$

$$
\left|\mathbf{U}_{\mathrm{n}+1}-\alpha\right| \leq \frac{5}{6}\left|\mathbf{U}_{\mathrm{n}}-\alpha\right| \text { : نبرهن أن (a }
$$

$$
\begin{array}{r}
h(x)-h(\alpha) \simeq h^{\prime}(\alpha) \times(x-\alpha) \\
h\left(\mathrm{U}_{\mathrm{n}}\right)-h(\alpha) \simeq h^{\prime}(\alpha)\left(\mathrm{U}_{\mathrm{n}}-\alpha\right): \\
\left|\mathrm{U}_{\mathrm{n}+1}-\alpha\right| \simeq h^{\prime}(\alpha) \times\left|\mathrm{U}_{\mathrm{n}}-\alpha\right| \\
x \in[3 ; 4]: \text { : من }\left|h^{\prime}(x)\right|<\frac{5}{6} \\
\left|h^{\prime}(\alpha)\right|<\frac{5}{6}: 3,5<\alpha<3,6
\end{array}
$$

$f(3,5)=\frac{1}{2,5} \ln 3,5=0,501 \ldots$
$f(3,6)=\frac{1}{2,6} \ln 3,6=0,492 \ldots$

$D_{1}=1 \quad$, \quad, در اسة اتجاه تغير الار|,

$$
\begin{aligned}
& \text {. } \alpha \text { م متقاربة } \mathbf{U}_{n} \text {) : } \lim _{n \rightarrow+\infty} \mathbf{U}_{\mathrm{n}}=\alpha \\
& \left|\mathrm{U}_{\mathrm{p}}-\alpha\right| \leq 10^{-3}: \text { : قيمة مقربة إلى } 1 \mathrm{U}_{\mathrm{p}} \text { (4) للعدد } \\
& \text { ولاينا : }\left|\mathbf{U}_{\mathrm{p}}-\alpha\right| \leq\left(\frac{5}{6}\right)^{p} \text { ومنه حتى يكون الحصر محقق يجب أن يكون : } \\
& \mathrm{p} \times \ln \left(\frac{5}{6}\right) \leq \ln 10^{-3}: \ln \left(\frac{5}{6}\right)^{p} \leq \ln 10^{-3} \\
& p \geq 38: p \geq 37,9: \frac{-3 \ln 10}{\ln \left(\frac{5}{6}\right)}: \text { ومنه } p \geq \text { منه }
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(1 \cdot \ln x+x \cdot \frac{1}{x}\right)(x+1)-x \ln x}{(x+1)^{2}} \\
& f^{\prime}(x)=\frac{(\ln x+1)(x+1)-x \ln x}{(x+1)^{2}} \\
& f^{\prime}(x)=\frac{x \ln x+\ln x+x+1-x \ln x}{(x+1)^{2}} \\
& f^{\prime}(x)=\frac{\ln x+x+1}{(x+1)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}(\ln x+x+1)=-\infty \\
& \lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} \ln x+x+1=+\infty \\
& \lim g(x) \times \lim g(x)<0
\end{aligned}
$$

$$
\begin{aligned}
& \left|\mathbf{U}_{\mathrm{n}+1}-\alpha\right| \leq \frac{5}{6}\left|\mathbf{U}_{\mathrm{n}}-\alpha\right|: \dot{\cup} \leq \\
& \left|\mathrm{U}_{\mathrm{n}}-\alpha\right| \leq\left(\frac{5}{6}\right)^{n} \text { : نبرهن أن }(\mathrm{b} \\
& \left|\mathbf{U}_{\mathrm{n}}-\alpha\right| \leq \frac{5}{6}\left|\mathbf{U}_{\mathrm{n}-1}-\alpha\right| \text { : مما سبق } \\
& \left|\mathbf{U}_{\mathrm{n}-1}-\alpha\right| \leq \frac{5}{6}\left|\mathbf{U}_{\mathrm{n}-2}-\alpha\right| \\
& \left|\mathbf{U}_{2}-\alpha\right| \leq \frac{5}{6}\left|\mathbf{U}_{1}-\alpha\right| \\
& \left|\mathbf{U}_{1}-\alpha\right| \leq \frac{5}{6}\left|\mathbf{U}_{0}-\alpha\right|
\end{aligned}
$$

و بالتّالي :
$\left|\mathbf{U}_{n}-\alpha\right| \times\left|\mathbf{U}_{n-1}-\alpha\right| \times \ldots \times\left|\mathbf{U}_{2}-\alpha\right| \times\left|\mathbf{U}_{1}-\alpha\right| \leq\left(\frac{5}{6}\right)^{\dot{j}}\left|\mathbf{U}_{n-1}-\alpha\right| \times\left|\mathbf{U}_{n-2}-\alpha\right| \times \ldots \times\left|\mathbf{U}_{0}-\alpha\right|$

$$
\begin{aligned}
& \left|\mathbf{U}_{\mathrm{n}}-\alpha\right| \leq\left(\frac{5}{6}\right)^{\mathrm{n}} \cdot\left|\mathbf{U}_{0}-\alpha\right| \text { : } \\
& \text { لاينا : } 3,5<\alpha<3,6 \text { وبما أن : }\left|\mathrm{U}_{0}-\alpha\right|=|3-\alpha| \\
& \text {. }\left|U_{n}-\alpha\right| \leq\left(\frac{5}{6}\right)^{n} \quad: \quad|3-\alpha|<1 \quad \text { فإن } \mid \text { ومنه } \\
& \text { : (} \alpha \text { (} \\
& -\left(\frac{5}{6}\right)^{n} \leq \mathbf{U}_{\mathrm{n}}-\alpha \leq\left(\frac{5}{6}\right)^{n}:\left|\mathbf{U}_{\mathrm{n}}-\alpha\right| \leq\left(\frac{5}{6}\right)^{n}: \text { :لينا } \\
& \alpha-\left(\frac{5}{6}\right)^{n} \leq \mathrm{U}_{\mathrm{n}} \leq \alpha+\left(\frac{5}{6}\right)^{n}: \operatorname{diog} \\
& \lim _{n \rightarrow+\infty}\left[\alpha-\left(\frac{5}{6}\right)^{n}\right]=\lim _{n \rightarrow+\infty}\left[\alpha+\left(\frac{5}{6}\right)^{n}\right]=\alpha \quad: \quad \text { : }
\end{aligned}
$$

$$
\text { c) قابلية الاششتقاق للالة F عد } 0 \text { من اليمين : }
$$

$$
\begin{aligned}
\lim _{\substack{x \rightarrow 0}} \frac{F(x)-F(0)}{x-0} & =\lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} \frac{F(x)}{x}=\lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} \frac{f(x)}{x} \\
& =\lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} \frac{\ln x}{x+1}=-\infty
\end{aligned}
$$

إذن F غير قابلة للالشتقاق عند 0 من اليمين .

$$
\lim _{x \rightarrow+\infty} f(x) \text { حساب) a -4 }
$$

$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{x \ln x}{x+1}=\lim _{x \rightarrow+\infty} \frac{x}{x+1} \times \ln x$

$$
=+\infty
$$

$$
f(x)-\ln x \quad: \quad \text { (b) }
$$

$f(x)-\ln x=\frac{x \ln x}{x+1}-\ln x=\frac{x \ln x-(x+1) \ln x}{x+1}$

$$
f(x)-\ln x=\frac{x \ln x-x \ln x-\ln x}{x+1}=\frac{-\ln x}{x+1}
$$

x	0		1	$+\infty$
$-\ln x$		+	0	-
$f(x)-\ln x$		+	0	-

$$
\lim _{x \rightarrow+\infty}[f(x)-\ln x]
$$

$\lim _{x \rightarrow+\infty}[f(x)-\ln x]=\lim _{x \rightarrow+\infty} \frac{-\ln x}{x+1}$

$$
=\lim _{x \rightarrow+\infty} \frac{\ln x}{x} \times \frac{-x}{x+1}=0
$$

$:(\mathrm{C}) و(\Gamma)$

$$
g^{\prime}(x)=\frac{1}{x}+1 \text { ولاينا : }
$$

ومنه : $g^{\prime}(x)>0$ وعليه $g(x)=0$ متز ايدة تماما و بالتالي المعادلة
وحيدا β في العجال [: $g(x)$ (b) تعيين إشارة

x	0	β	$+\infty$	
$g^{\prime}(x)$		+		+
$g(x)$				

x	0	β	$+\infty$	
$g(x)$		-	0	+

$$
\begin{aligned}
& f^{\prime}(x)=\frac{g(x)}{(x+1)^{2}} \quad \text { در اسة اتجاه تغير الدالةة } \quad: 1 \\
& \text { ومذه f متزايدة تماما على المجال]] }
\end{aligned}
$$

$$
\begin{aligned}
& f(\beta)=-\beta \text { : } \\
& g(\beta)=0 \text {, } f(\beta)=\frac{\beta \ln \beta}{\beta+1} \quad \text { لدينا } \\
& \ln \beta=-(\beta+1): \ln \beta+\beta+1=0: \text { وبالتّلمي } \quad \text { ومنه } \\
& f(\beta)=-\beta \text { : } f(\beta)=\frac{-\beta(\beta+1)}{\beta+1}: \text { : } f \text { : } \\
& \lim _{x \rightarrow 0} f(x) \text { حساب (a - } 3 \\
& \lim _{x \rightarrow 0} f(x)=\lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} \frac{x \ln x}{x+1}=0 \quad: \quad \text { : }
\end{aligned}
$$

اللدالةّ f غير مبرفةّ عند 0 و عليه غير قابلة للاششتقال عثد 0
$f^{\prime}(x)=\frac{-1}{x(x+1)}+\frac{1}{(x+1)^{2}}=\frac{-(x+1)+x}{(x+1)^{2}}$

$$
f^{\prime}(x)=\frac{-1}{x(x+1)^{2}}
$$

x	0	$+\infty$
$f^{\prime}(x)$		
$f(x)$	$+\infty \longrightarrow 0$	

$f(x)$ (2) استنتّاج إشارة
. $f(x)>0$:

$g^{\prime}(x)=1 \cdot \ln \left(\frac{x+1}{x}\right)+\frac{-1}{x(x+1)} \times x$
$g^{\prime}(x)=\ln \left(\frac{x+1}{x}\right)+\frac{-1}{x+1}$

$$
g^{\prime}(x)=f(x)
$$

$$
(h o k)(x)=h[k(x)]=h\left[\frac{1}{x}\right]
$$

$$
(\text { hok })(x)=\frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}}=x \ln \left(\frac{x+1}{x}\right)
$$

$$
g=\text { hok } \quad: \quad g(x)=(\text { hok })(x)
$$

$\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} x \ln \frac{x+1}{x}=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} x \ln (x+1)-x \ln x=0$

$\lim _{\substack{x \rightarrow 0}} f(x)=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}}\left(\ln \frac{x+1}{x}-\frac{1}{x+1}\right)=+\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(\ln \frac{x+1}{x}-\frac{1}{x+1}\right)=0$
$f^{\prime}(x)=\frac{\frac{1 \cdot x-1(x+1)}{x^{2}}}{\frac{x+1}{x}}-\frac{-1}{(x+1)^{2}}$
$f^{\prime}(x)=\frac{\frac{-1}{x^{2}}}{\frac{x+1}{x}}+\frac{1}{(x+1)^{2}}=\frac{-1}{x^{2}} \times \frac{x}{x+1}+\frac{1}{(x+1)^{2}}$
$\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty}\left(-8 \ln x+x^{2}+4\right)=\lim _{x \rightarrow+\infty} x \cdot\left(\frac{-8 \ln x}{x}+x+\frac{4}{x}\right)=+\infty$

$$
g^{\prime}(x)=\frac{-8}{x}+2 x=\frac{-8+2 x^{2}}{x}=\frac{2\left(x^{2}-4\right)}{x}
$$

$$
x=2 \quad \begin{array}{lll}
x & \text { : } & g^{\prime}(x)=0
\end{array}
$$

. $g^{\prime}(x)>0$ متر متزايدة تماما لان
 .

x	0	2	$+\infty$	
$g^{\prime}(x)$		-	0	+
$g(x)$	$+\infty$	$g(2) \xrightarrow{+\infty}$		

: $g(x)$)

$$
\ln 2<1: \text { :كن } g(2)=-8 \ln 2+8
$$

$$
g(2)>0:-8 \ln 2+8>0:
$$. $g(x)>0$ | 0 |

$$
f^{\prime}(x)=\frac{g(x)}{x^{3}}: \text { : تبيان أن أه }
$$

$$
f^{\prime}(x)=\frac{2 x^{3}-2 x\left(x^{2}+4\right)}{x^{4}} \times \ln x+\frac{x^{2}+4}{x^{2}} \times \frac{1}{x}
$$

$$
f^{\prime}(x)=\frac{-8}{x^{3}} \ln x+\frac{x^{2}+4}{x^{3}}=\frac{-8 \ln x+x^{2}+4}{x^{3}}
$$

$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x^{2}+4}{x^{2}} \times \ln x=-\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{x^{2}+4}{x^{2}} \times \ln x=+\infty$

x	0	$+\infty$	
$g^{\prime}(x)$			
$g(x)$	$0 \longrightarrow 1$		

: $\operatorname{Ln}\left(\mathrm{U}_{\mathrm{n}}\right)$ حساب (1-III
$\ln \left(\mathrm{U}_{\mathrm{n}}\right)=\ln \left(\frac{n+1}{n}\right)^{n}=n \ln \left(\frac{n+1}{n}\right)=g(n)$
2) نبين أن

$$
\ln \left(\mathrm{U}_{n+1}\right)-\ln \left(\mathrm{U}_{n}\right)>0 \text { وليه : }
$$

$$
\mathbf{U}_{\mathrm{n}+1}>\mathrm{U}_{\mathrm{n}}: \ln \left(\mathrm{U}_{n+1}\right)>\ln \left(\mathrm{U}_{n}\right): \text { : }
$$

$$
\text { لان الدالة ln متّز ايدة تماما . بذن (}) \text { (Un متز ايدة تماما. }
$$

$$
\lim _{n \rightarrow+\infty} \ln \left(\mathbf{U}_{n}\right)=\lim _{n \rightarrow+\infty} g(n)=1 \quad \text { نبين أن } 1 \text { (} 3 \text {) متقاربة }
$$

إْن :

- $\lim _{\substack{\rightarrow \\ x \rightarrow 0}} g(x)=\lim _{\substack{x \\ x \rightarrow 0}}\left(-8 \ln x+x^{2}+4\right)=+\infty$

$$
\begin{aligned}
& \ln \left(\mathrm{U}_{n+1}\right)-\ln \left(\mathrm{U}_{n}\right)=\mathrm{g}(n+1)-\mathrm{g}(n)
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{g(x)}{x^{3}}
$$

x	0	$+\infty$	
$f^{\prime}(x)$		+	
$f(x)$			$+\infty$

$h(x)$: در اسة إشارة (1-II

$$
h(x)=\frac{x^{2}+4}{x^{2}} \times \ln x-\ln x
$$

$$
h(x)=\frac{\left(x^{2}+4\right) \ln x-x^{2} \ln x}{x^{2}}=\frac{4 \ln x}{x^{2}}: \text { ومنه }
$$

$D_{f}=\{x \in \mathbb{R}: x+2>0\} \quad: \quad$: الجهوعة التعريف 1

$$
\text { إنن : } \left.D_{f}=\right]-2:+\infty
$$

$$
\text { 2) در اسة استمر اريةّ f عند } 0 \text { : }
$$

$$
f(0)=3-\ln 2 \text { : لاينا }
$$

$$
\left\{\begin{array}{l}
f(x)=x+3+\ln \frac{x+1}{x+2} ; x \geq 0 \\
f(x)=x+3+\ln \frac{-x+1}{x+2} ; x \leq 0
\end{array}\right.
$$

$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x+3+\ln \frac{x+1}{x+2}=3-\ln 2=f(0)$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x+3+\ln \frac{-x+1}{x+2}=3-\ln 2=f(0)$

$$
\text { ومنه f مستمرة عند } 0
$$

$x=1$ ومنه $\ln x=0$ تكافئ $h(x)=0$
$x>1$ ومنه $\ln x>0$ 0 تكافـة $h(x)>0$. $0<x<1$ ومنه $\ln x<0$ تكافیى $h(x)<0$
2) الوضعية النسبية للمنحنى (C) و (C) .
 . A ($1 ; 0)$ (C) $\lim _{x \rightarrow+\infty} h(x)=\lim _{x \rightarrow+\infty} 4 \times \frac{\ln x}{x^{3}}=0 \quad$: لدينا نستتتج أن (C) و ((γ) متقاربان عندما يقترب x من

$$
\text { 4) إنشاء (C) و (}) \text { : : }
$$

معادلة المماس لـ

$$
=\lim _{x \rightarrow 0} 1-\frac{\ln (1-x)}{-x}-\frac{1}{2} \times \frac{\ln \left(1+\frac{x}{2}\right)}{\frac{x}{2}}=\frac{-1}{2}
$$

3) دعلدهر

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} x+3+\ln \frac{x+1}{x+2}
$$

$$
=+\infty
$$

-من أجل : x>0 لدينا :

$$
f^{\prime}(x)=1+\frac{\frac{1(x+2)-1(x+1)}{(x+2)^{2}}}{\frac{x+1}{x+2}}=1+\frac{1}{(x+2)^{2}} \times \frac{x+2}{x+1}
$$

$$
f^{\prime}(x)=1+\frac{1}{(x+2)(x+1)}
$$

 : $x<0$ 0 $f^{\prime}(x)=1+\frac{\frac{-1(x+2)-1(-x+1)}{(x+2)^{2}}}{\frac{-x+1}{x+2}}=1+\frac{-3}{(x+2)^{2}} \times \frac{x+2}{-x+1}$

$$
f^{\prime}(x)=1-\frac{3}{(x+2)(-x+1)}=\frac{(x+2)(-x+1)-3}{(x+2)(-x+1)}
$$

$$
f^{\prime}(x)=\frac{-x^{2}+x-2 x+2-3}{(x+2)(-x+1)}
$$

$$
\begin{aligned}
& \begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0} \frac{x 3+\ln \frac{x+1}{x+2}-3+\ln 2}{x} \\
& =\lim _{x \rightarrow 0} \frac{x+\ln 2+\ln (x+1)-\ln (x+2)}{x}
\end{aligned} \\
& =\lim _{x \rightarrow 0} 1+\frac{\ln (x+1)}{x}+\frac{1}{x} \ln \left(\frac{2}{x+2}\right) \\
& =\lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} 1+\frac{\ln (x+1)}{x}+\frac{1}{x} \ln \frac{2}{2\left(\frac{x}{2}+1\right)} \\
& =\lim _{x \rightarrow 0} 1+\frac{\ln (x+1)}{x}+\frac{1}{x} \ln \frac{1}{1+\frac{x}{2}} \\
& \lim _{\substack{x \rightarrow 0 \\
x \rightarrow 0}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} 1+\frac{\ln (x+1)}{x}-\frac{1}{x} \ln \left(1+\frac{x}{2}\right) \quad: \\
& =\lim _{x \rightarrow 0} 1+\frac{\ln (x+1)}{x}-\frac{1}{2} \times \frac{\ln \left(1+\frac{x}{2}\right)}{\frac{x}{2}}=\frac{3}{2} \\
& \text { !ذن fتقبل الاشتّقاق عثد } 0 \text { من اليمين . } \\
& \lim _{\substack{c \rightarrow 0}} \frac{f(x)-f(0)}{x-0}=\lim _{\substack{c \\
x \rightarrow 0}} \frac{x+3+\ln \frac{-x+1}{x+2}-3+\ln 2}{\frac{x}{2}} \\
& =\lim _{x \rightarrow 0} \frac{x+\ln \left(\frac{-x+1}{x+2}\right)+\ln 2}{x} \\
& =\lim _{x \rightarrow 0} \frac{x+n(1-x)-\ln (x+2)+\ln 2}{x} \\
& =\lim _{x \rightarrow 0} 1-\frac{\ln (1-x)}{-x}+\frac{1}{x} \ln \frac{2}{x+2}
\end{aligned}
$$

$\log \left(x^{2}-1\right)=\log x$: لدينا $x^{2}-1>0$, $\quad x>0$: تكون المعادلة معرفة من أجل
 . $x^{2}-x-1=0$: $\Delta=5$: $\Delta=(-1)^{2}-4(-1)$: لدينا ابذن للمعادلة حلين : $\quad x_{2}=\frac{1-\sqrt{5}}{2}, x_{1}=\frac{1+\sqrt{5}}{2}$

$$
\text { ! } \mathrm{J}=\left\{\frac{1+\sqrt{5}}{2}\right\}: \text { مجموعة الحمول }
$$

$\log x+\log (-x+5)=\log 4$: لدينا 4 $-x+5>0, x>0$: تكون المعادلة معرفة من أجل

$\log x(-x+5)=\log 4 \quad: \quad$ المعادلة تكافئ

$$
-x^{2}+5 x-4=0: x(-x+5)=4: \text { وي أن }
$$

$$
\begin{aligned}
& \Delta=-11 \text { : } \Delta=(5)^{2}-4(-4)(-1) \\
& \text { الن ليس للمعادلة حلول . } \\
& \log x-\log (x-1)=1 \text { : } 1 \text { : لاينا } \\
& x-1>0 \text {, } x>0: \text { : } \\
& D=] 1 ;+\infty[:]
\end{aligned}
$$

$\frac{x}{x-1}=10 \quad \log \frac{x}{x-1}=\log 10:$: ومنه $x=\frac{10}{9}$ وبالتّالي : $9 x=10$ ومني $10(x-1)$ وعليه $S=\left\{\frac{10}{9}\right\}:$ إن مجموعة الحلول
: 18 :
ـ در اسةٌ تغير ات الدو ال :

$$
f^{\prime}(x)=-\frac{x^{2}+x+1}{(x+2)^{2}(-x+1)}
$$

$$
-x+2>0,-x+1>0 \text {, } x^{2}+x+1>0 \text { :لدينا }
$$.

x	-2	0		$+\infty$	
$f^{\prime}(x)$		-	$\frac{-1}{2}$	$\frac{3}{2}$	+
$f(x)$					
$+\infty$					

$\lim _{x \rightarrow+\infty} f(x)-x-3$ (4) حساب
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(x+3+\ln \frac{x+1}{x+2}-x-3\right)$

$$
=\lim _{x \rightarrow+\infty} \ln \left(\frac{x+1}{x+2}\right)=0
$$

نستتتج أن $y=x+3$ معادلة مستقيم مقارب مائل للمنحني (C) عند
5) التمثيل اليياني : $x=-2$ معادلة مستقيم مقارب

$$
\begin{array}{r}
\left.g(x)=\frac{1-\frac{1}{\ln 10} \times \ln x}{x} \text { و } \quad g(x)=\frac{1-\log x}{x}: \begin{array}{l}
\text { ومنه }
\end{array}\right) \\
g(x)=\frac{\ln 10-\ln x}{x \ln 10}:
\end{array}
$$

$$
\text { - } \left.D_{g}=\right] 0 ;+\infty[
$$

$$
\text { - } \lim _{x \rightarrow 0} g(x)=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} \frac{\ln 10-\ln x}{x \ln 10}=\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} \frac{1}{x \ln 10}(\ln 10-\ln x)=+\infty
$$

$$
\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} \frac{\ln 10-\ln x}{x \ln 10}
$$

$$
=\lim _{x \rightarrow+\infty}\left[\frac{1}{x}-\frac{\ln x}{x} \times \frac{1}{\ln 10}\right]=0
$$

$$
g^{\prime}(x)=\frac{1}{\ln 10} \times \frac{\frac{-1}{x} \cdot x-(\ln 10-\ln x) \cdot 1}{x^{2}}
$$

$$
=\frac{-1-\ln 10+\ln x}{x^{2} \ln 10}
$$

$$
=\frac{\ln x-\ln 10-1}{x^{2} \ln 10}
$$

$$
g^{\prime}(x)=\frac{\ln \left(\frac{x}{10}\right)-1}{x^{2} \ln 10} \quad: \quad \text { و }
$$

$$
\text { In }\left(\frac{x}{10}\right)-1=0: \text { : دراسة اششارة المشتّق : } g^{\prime}(x)=0
$$

$$
\text { و وعليه : } \left.x=10 \mathrm{e}: \frac{x}{10}=\mathrm{e}\left(\frac{x}{10}\right)=1 \text { بالتّالئي } \quad \ln \right)
$$

$$
x>10 \mathrm{e} \text { : } \ln \left(\frac{x}{10}\right)-1>0 \text { : } g^{\prime}(x)>0
$$

$$
x<10 \mathrm{e} \text {. } g^{\prime}(x)<0
$$

- $\left.\boldsymbol{D}_{f}=\right]-\infty ; 0[\cup] 0 ;+\infty[$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{1}{\ln 10} \times \ln |x|=+\infty$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{\ln 10} \times \ln |x|=-\infty$
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{\ln 10} \times \ln |x|=-\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{1}{\ln 10} \times \ln |x|=+\infty$
- $f^{\prime}(x)=\frac{1}{\ln 10} \times \frac{1}{x}$

$$
\text { لما } \left.f^{\prime}(x)<0: x \text { وبالتالي } f \text { متناقصة تماما على المجال] } 0 \text {; } 0 \text { [}\right]
$$

- $h^{\prime}(x)=\frac{1}{\ln 10} \times \frac{\frac{1}{x} \cdot x-\ln x}{x^{2}}=\frac{1}{\ln 10} \times \frac{1-\ln x}{x^{2}}$

$$
h^{\prime}(x)=\frac{1-\ln x}{x^{2} \ln 10} \quad: \quad \text { ونه }
$$

$$
x=\mathrm{e} \text { e } 1-\ln x=0 \text { ومنه } h^{\prime}(x)=0
$$

$$
x<\mathrm{e} \text { : } 1-\ln x>0 \text { : } \mathrm{C} \text { : } h^{\prime}(x)>0
$$

$$
x>\mathrm{e} \text {. } 1-\ln x<0 \text { : ومنه } h^{\prime}(x)<0
$$

x	0	e	$+\infty$	
$h^{\prime}(x)$		0	-	
$h(x)$				

$$
h(e)=\frac{\ln \mathrm{e}}{\mathrm{e} \ln 10}=\frac{1}{\mathrm{e} \ln 10} \simeq 0,16
$$

19 (in

$$
f(x)=\frac{1}{(\ln 10)^{2}} \times(\ln x)^{2}: x f(x)=\left(\frac{\ln x}{\ln 10}\right)^{2}
$$

x	0		10e		$+\infty$
$g^{\prime}(x)$				+	
$g(x)$					

$g(10 e)=\frac{\ln 10-\ln 10 \mathrm{e}}{10 e \cdot \ln 10}=\frac{\ln 10-\ln 10-\ln \mathrm{e}}{10 e \ln 10}=\frac{-1}{10 \mathrm{e} \ln 10}$ $g(10 e) \simeq-0,015$ نمثل البيان في معلم غير متجانس لتّوضيح الرسم لأن

$$
\begin{aligned}
& \log x \quad \frac{1}{\ln 10} \times \ln x \\
& \text {. } h(x)=\frac{\log x}{x}=\frac{\ln 10}{x}: \text { لاينا } \\
& h(x)=\frac{\ln x}{x \ln 10} \quad \text { ومنه }
\end{aligned}
$$

- $\left.D_{h}=\right] 0 ;+\infty[$
$\lim _{\substack{x \rightarrow 0 \\ x \rightarrow 0}} h(x)=\lim _{x \rightarrow 0} \frac{\ln x}{x \ln 10}=-\infty$
$\lim _{x \rightarrow+\infty} h(x)=\lim _{x \rightarrow+\infty} \frac{1}{\ln 10} \times \frac{\ln x}{x}=0$

$$
f(x)=\log (x-4)(1-x) \text { لداينا : }
$$

$$
f(x)=\frac{1}{\ln 10} \times \ln (x-4)(1-x)
$$

- $D_{f}=\{x \in \mathbb{R}:(x-4)(1-x)>0\}$

x	$-\infty$	1	4	$+\infty$		
$(x-4)(1-x)$		-	0	+	0	-

- $\lim _{\substack{x \rightarrow 1 \\ x \rightarrow 1}} f(x)=\lim _{\substack{x \rightarrow 1 \\ x \rightarrow 1}} \frac{1}{\ln 10} \ln (x-4)(1-x)=-\infty$
$\lim _{\substack{<\\ x \rightarrow 4}} f(x)=\lim _{x \rightarrow 4} \frac{1}{\ln 10} \ln (x-4)(1-x)=-\infty$
- $f^{\prime}(x)=\frac{1}{\ln 10} \times \frac{-2 x+5}{(x-4)(1-x)}$
- $\lim _{\substack{>\\ x \rightarrow 0}} f(x)=\lim _{\substack{>\\ x \rightarrow 0}} \frac{(\ln x)^{2}}{(\ln 10)^{2}}=+\infty$

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{(\ln x)^{2}}{(\ln 10)^{2}}=+\infty
$$

$f^{\prime}(x)=\frac{1}{(\ln 10)^{2}} \times 2 \times \frac{1}{x} \ln x$

إذن f
] $0 ; 1$ [1 تكافى $f^{\prime}(x)<0$

x	0	e	$+\infty$	
$f^{\prime}(x)$		-	0	+
$f(x)$	$+\infty$		$f(1)$	

$$
f(1)=\frac{1}{(\ln 10)^{2}} \times(\ln 1)^{2}=0
$$

لاينا معادلة المستقڤيم المقارب $x=0$ و بما أن

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=\lim _{x \rightarrow+\infty} \frac{1}{(\ln 10)^{2}} \frac{(\ln x)^{2}}{x}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{1}{(\ln 10)^{2}} \times \frac{(2 \ln (\sqrt{x}))^{2}}{(\sqrt{x})^{2}}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{4}{(\ln 10)^{2}} \times\left(\frac{\ln \sqrt{x}}{\sqrt{x}}\right)^{2}=0
$$

$$
\begin{aligned}
& \text {. } x>1 \text { ونـن } \ln x>0 \text { تكافـن } f^{\prime}(x)>0
\end{aligned}
$$

A عدد حقيقي موجب تماما و يختلف عن 1 .
اللدالة : $x \mapsto a^{x}$

$$
a^{x}=e^{x \ln a}
$$

دراسة التنفير آت :

$$
\begin{aligned}
& f(x)=a^{x}=\mathrm{e}^{x / n a} \\
& \left.\quad D_{f}=\right]-\infty ;+\infty[
\end{aligned}
$$

$$
\text { من أجل } 1 \text { : } a>1
$$

$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \mathrm{e}^{\mathrm{x} \text { tha } a}=+\infty: \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \mathrm{e}^{x \text { tha }}=0$ $f^{\prime}(x)=(L n a) \cdot \mathrm{e}^{\mathrm{x} L n a}$
\mathbb{R} وعیيه $f^{\prime}(x)>0$ وبالثتالي f متز ايدة تمامـا على

x	$-\infty$		$+\infty$
$f^{\prime}(x)$		+	$+\infty$
$f(x)$			

: $0<a<1$ im in
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \mathrm{e}^{x / n a}=0 ; \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \mathrm{e}^{x / n a}=+\infty$ $f^{\prime}(x)=(L n a) \mathrm{e}^{x L n a}$
\mathbb{R} و $\ln a<0$: وبالتنالي f متتاقصة تمامـا على $f^{\prime}(x)<0$ لا

x	$-\infty$		$+\infty$
$f^{\prime}(x)$		+	
$f(x)$	$+\infty$		

$$
\begin{aligned}
& x \mapsto \mathrm{e}^{x \ln 3} \quad \text { g } \quad x \mapsto 3^{x}: f^{\text {لتكن الدالد }} \\
& \text { وهي الدالثة الأسية ذات الأساس } 3 \text {. }
\end{aligned}
$$

$$
x>\frac{5}{2}-2 x+5<0 \text { تكافئ } f^{\prime}(x)<0
$$

| x | 1 | $\frac{5}{2}$ | 4 |
| :---: | :--- | :--- | :--- | :--- |
| $f^{\prime}(x)$ | + | - | |
| $f(x)$ | | $f\left(\frac{5}{2}\right)$ | |
| $-\infty$ | | | |

$$
\begin{aligned}
& f\left(\frac{5}{2}\right)=\frac{1}{\ln 10} \times \ln \left(\frac{5}{2}-4\right)\left(1-\frac{5}{2}\right) \\
& f\left(\frac{5}{2}\right)=\frac{1}{\ln 10} \times \ln \left(\frac{-3}{2}\right)\left(\frac{-3}{2}\right)=\frac{1}{\ln 10} \ln \frac{9}{4} \simeq 0,35
\end{aligned}
$$

$$
\text { دعادلات المستقيمات المقاربة } x=1, x=4
$$

أكرس تغيرات الدوال الآتية ثم مثلها بيانيا.

1) $f: x \mapsto 2^{x^{2}+x+1}$
2) $g: x \mapsto(0,4)^{x-1}$
3) $h: x \mapsto x^{x}$

أدرس تغير ات الدالتين كل من الدالتين f f و المعرفقين فيما يلي ثُم مثلهما بيانيا.

$$
\begin{aligned}
f: x \mapsto-2.4^{x}+2: & g: x \mapsto 2.4^{x}+1 \\
& \cdot\left(C_{g}\right) و\left(C_{f}\right)
\end{aligned}
$$

$$
f(x)=\frac{10^{x}-10^{-x}}{2} \quad g(x)=\frac{10^{x}+10^{-x}}{2}
$$

1- عين مجموعة تعريف كل منهما .
$[g(x)]^{2}-[f(x)]^{2}:-2$ 3- الدرس تغيرات الثالةة

$$
f(1), f(0), f(-1), f(-2), \mathrm{f}(2): \text { : احسب }
$$

$$
f(x)=|x|^{\frac{1}{x-1}}: \text { دالة معرفة بالعبارة }
$$

1- الدرس استمرارية الدالة v f على مجموعة تعريفها. 2- الحسب نهايات الدالةّ f f عند أطر افـ مجالات التُريف . 3- 3-نعبّبر الدالة g المعرفة كما يلي :

$$
\left\{\begin{array}{l}
g(x)=f(x) \quad ; \quad x \neq 1 \\
\mathrm{~g}(1)=\mathrm{e}
\end{array}\right.
$$

a و a عد a^{\prime} عدان حقيقيان مو جبان تماما و يختلف كل منهما عن 1 . x x x

1) $\ln a^{x}=x \cdot \ln a$

$$
\text { 3) } a^{x-x^{\prime}}=\frac{a^{x}}{a^{x^{\prime}}}
$$

4) $\left(a^{x}\right)^{x^{\prime}}=a^{x \cdot x^{\prime}}$
5) $\left(a \cdot a^{\prime}\right)^{x}=a^{x} \cdot a^{\prime x}$
6) $\left(\frac{a}{a^{\prime}}\right)^{x}=\frac{a^{x}}{a^{\prime x}}$

حالة خاصة :
$x \mapsto 10^{x}$: من أجل : \quad : الدالة \quad a=10 تسمى اللدالة الأسية ذات الأساس 10.
\square

1) $10^{x}=5 \quad$;
2) $3^{x}=5^{2 x-5}$
;
3) $5^{2 x}-7 \cdot 5^{x}+12=0$
4) $3^{x+2}+9^{x-1}=1458$
\qquad $\left\{\begin{array}{l}4^{x}=y^{4} \\ 4^{x+1}=y^{4+x}\end{array} \quad: \quad\right.$ حل في

عين مشتقات الدوال الآتية :

1) $f: x \mapsto 10^{2 x-3}$
2) $f: x \mapsto 4^{x^{2}-4 x}$
3) $f: x \mapsto\left(\frac{1}{2}\right)^{\frac{1}{2} x^{2}-5}$
4) $f: x \mapsto\left(x^{2}-4\right) 2^{x}$

- الدرس الستّمر ارباة الدالة g عند 1. أنشى التُمثيل البياني

باستعمال الالثة البيانية .

$$
\text { |(1) لاينا : } 5
$$

$$
x=\frac{\ln 5}{\ln 10}: \text { وبالتالي } x \ln 10=\ln 5 \text { ومنه }
$$

مجموعة الحلول : S

$$
\ln 3^{x}=\ln 5^{2 \times 5} \text { : لدينا : }
$$

$$
x \ln 3=2 x \ln 5-5 \ln 5: \quad x \ln 3=(2 x-5) \ln 5: \text { : }
$$

$$
x \ln 3-2 x \ln 5=-5 \ln 5: \text { : }
$$

$$
\ln 5^{x}=\ln 3 \quad 5^{x}=3: y=3 \mathrm{w}
$$

$$
x=\frac{\ln 3}{\ln 5}: x \operatorname{lon} 5=\ln 3: \text { : } x \text { : }
$$

$$
\ln 5^{x}=\ln 4: 5^{x}=4: y=4 \mathrm{~W}
$$

$$
x=\frac{\ln 4}{\ln 5}: \text { ومنه : وبالتالي } x \ln 5=\ln 4
$$

$$
\text { . } \mathrm{S}=\left\{\frac{\ln 3}{\ln 5} ; \frac{\ln 4}{\ln 5}\right\} \quad: \quad:
$$

$$
9 \cdot 3^{x}+3^{-2} \cdot\left(3^{2}\right)^{x}-1458=0: \text { ي }
$$

$$
\begin{aligned}
& x=\frac{-5 \ln 5}{\ln 3-\ln 5^{2}} \quad \text { i } x(\ln 3-2 \ln 5)=-5 \ln 5: \\
& x=\frac{-5 \ln 5}{\ln \left(\frac{3}{25}\right)} \\
& 5^{2 x}-7 \cdot 5^{x}+12=0 \text { : دلدينا } \\
& \Delta=1 \text { : }
\end{aligned}
$$

انشئ التُثيل البياني

$$
\text { 1) لاينا : } 10^{x} 10^{x}=5 \text { وهي تكافى: : }
$$

$$
x=\frac{\ln 5}{\ln 10}: x \ln 10=\ln 5 \text { وبائتالي }
$$

$$
\mathrm{S}=\left\{\frac{\ln 5}{\ln 10}\right\} \quad: \quad \text { :حجموعة الحلول}
$$

$$
\ln 3^{x}=\ln 5^{2 x-5}: 3^{x}=5^{2 x-5} \text { وهي تكافئ } 3^{2 x} \text {) لدينا }
$$

$$
x \ln 3=2 x \ln 5-5 \ln 5: x \operatorname{cln} 3=(2 x-5) \ln 5: \text { e }
$$ $x \ln 3-2 x \ln 5=-5 \ln 5:$: عليه

$$
x=\frac{-5 \ln 5}{\ln 3-\ln 5^{2}} \quad \text { ي } x(\ln 3-2 \ln 5)=-5 \ln 5:
$$

$$
x=\frac{-5 \ln 5}{\ln \left(\frac{3}{25}\right)}
$$

$$
5^{2 x}-7 \cdot 5^{x}+12=0
$$

$$
\Delta=1 \text { : }
$$

$$
y_{2}=4, y_{1}=3 \text { لانل للمعادلة طلـا }
$$

$$
\ln 5^{x}=\ln 3 \quad 5^{x}=3: y=3 \mathrm{~W}
$$

9. $3^{x}+\left(3^{2}\right)^{x} \cdot\left(3^{2}\right)^{-1}=1458: 3^{x+2}+9^{x-1}=1458$: :

$$
9 \cdot 3^{x}+3^{-2} \cdot\left(3^{2}\right)^{x}-1458=0
$$

باستعمال الالة البيانية .
\qquad

$$
\begin{aligned}
f(x)= & \frac{10^{x}}{10^{x}-1} \text { : } 1 \text { دالة معرفة بالعبارة مجوعة تعريف الالـة } f
\end{aligned}
$$

2) احسب النهايات عد أطرافـ مجموعة التعريف

$$
\text { 3) احسب (f }{ }^{\prime} \text { وأدس إثارته. }
$$ التّرين 10 :

1) الرس تغيرات الدالة g حيث: $g(x)=\ln x+1-\frac{1}{x}$ و استتّج إشارتها . $f(x)=x^{x-1}$: دالة عدية لمتير حققيقي موجب تماما x معرفة كها يلمي $f(2$ ـ الدرس تغيرات الدالة f.
.

$$
\begin{aligned}
& f(x)=2^{x}+2^{-x} \text { : ارس تغيرات الادالة } f \text { ذات المتغير الحقيقي } x \text { حيث }
\end{aligned}
$$

$$
\begin{aligned}
& \text { التُرين } 9 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{\ln 3}{\ln 5}: x \ln 5=\ln 3: \text { : ومنه } \\
& \ln 5^{x}=\ln 4 \text { : } 4 \text { وغيه } 5^{x}=4: y=4 \mathrm{wl} \\
& x=\frac{\ln 4}{\ln 5}: \text { و وبالتالي : } x \ln 5=\ln 4 \text { : } \\
& . \mathrm{S}=\left\{\frac{\ln 3}{\ln 5} ; \frac{\ln 4}{\ln 5}\right\} \quad: \quad: \text { : }
\end{aligned}
$$

$$
\text { مجموعة الحثول : S }=\{(2, \ln 2) ;(-2,-\ln 2)\}
$$

:

$$
\begin{aligned}
& f^{\prime}(x)=(2 \operatorname{Ln} 10) \mathrm{e}^{(2 x-3) \ln 10}=(2 \operatorname{Ln} 10) 10^{2 x-3} \\
& f(x)=\mathrm{e}^{\left(x^{2}-4 x\right) \ln 4} \mathrm{I}: \quad f(x)=4^{x^{2}-4 x} \quad \text { : أينا } \\
& f^{\prime}(x)=(2 x-4) \ln 4 \times \mathrm{e}^{\left(x^{2}-4 x\right) \ln 4} \quad: \quad \text { : } \\
& f^{\prime}(x)=4(x-2) \ln 2 \times 4^{x^{2}-4 x} \quad: \quad \text { ! } \\
& f(x)=\left(\frac{1}{2}\right)^{\frac{1}{2} x^{2}-5}: \text { لدينا } \\
& f(x)=\mathrm{e}^{\left(\frac{1}{2} x^{2}-5\right) \ln \frac{1}{2}}=\mathrm{e}^{-\left(\frac{1}{2} x^{2}-5\right) \ln 2} \quad: \quad \text { il } \\
& f^{\prime}(x)=-(x \ln 2) \mathrm{e}^{-\left(\frac{1}{2} x^{2}-5\right) \ln 2}: \text {, } \quad \text {, } \\
& f^{\prime}(x)=-(x \ln 2)\left(\frac{1}{2}\right)^{\frac{1}{2} x^{2}-5}: \text { وليه } \\
& f(x)=\left(x^{2}-4\right) e^{x / n 2} \quad \text { : } \mathrm{i} \quad f(x)=\left(x^{2}-4\right) 2^{x}: \text { (4) لدينا } \\
& f^{\prime}(x)=2 x \cdot \mathrm{e}^{x \ln 2}+\left(x^{2}-4\right) \ln 2 \times \mathrm{e}^{x \ln 2} \quad: \quad: \text { هن } \\
& =\mathrm{e}^{\mathrm{x} \ln 2}\left[2 x+\left(x^{2}-4\right) \ln 2\right] \\
& \text {. } f^{\prime}(x)=\left[\left(x^{2}-4\right) \ln 2+2 x\right] \times 2^{x}
\end{aligned}
$$

$f(x)=\mathrm{e}^{\left(x^{2}+x+1\right) / n 2} \quad: \quad f(x)=2^{x^{2}+x+1}:$: ومنه \quad (

- $D_{f}=\mathbb{R}$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \mathrm{e}^{\left(x^{2}+x+1\right) \ln 2}=+\infty$
- $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \mathrm{e}^{\left(x^{2}+x+1\right) n 2}=+\infty$
$f^{\prime}(x)=(2 x+1) \ln 2 \cdot \mathrm{e}^{\left(x^{2}+x+1\right) / n 2}$

$$
\begin{aligned}
& \frac{1}{9} \cdot 3^{2 x}+9 \cdot 3^{x}-1458=0: 8: 9 \\
& 3^{2 x}+81 \cdot 3^{x}-13122=0 \quad \text { : بالتّالي } \\
& y^{2}+81 y-13122=0 \quad \text { بوضع } 3^{x}=y \text { نجـ } \\
& \text { لدينا : } \Delta=59049 \text { ومنه للمعادلة حلين : } \\
& \text { (مرفوض) } y_{2}=\frac{-81-243}{2}=-162: y_{1}=\frac{-81+243}{2}=81 \\
& \text { وعليه : } \ln 3^{x}=\ln 81: 3^{x}=81 \text { وبالتّالي } \\
& x=4: \text { و ومنيه : } x=\frac{4 \ln 3}{\ln 3} \quad x \ln 3=\ln 3^{4} \text { : } \\
& \text {. } S=\{4\} \quad \text { : جمهوعة الحنول } \\
& \text { : التّمصيسن } 2 \\
& \text { حل الجملة : وهي تكافئ : } \\
& \left\{\begin{array}{l}
x \ln 4=4 \operatorname{Ln} y \\
(x+1) \ln 4=(4+x) \ln y
\end{array}:\left\{\begin{array}{l}
\ln 4^{x}=\ln y^{4} \\
\ln 4^{x+1}=\ln y^{4+x}
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
\ln y=\frac{x \ln 4}{4} \\
(x+1) \ln 4=(x+4) \times \frac{x \ln 4}{4}
\end{array}\right. \\
& \left\{\begin{array}{l}
\ln y=\frac{x \ln 4}{4} \\
4(x+1)=x \cdot(x+4)
\end{array}\right. \\
& \left\{\begin{array}{l}
x=2 \ln x=-2 \\
\ln y=\frac{x \ln 4}{4}
\end{array}:\left\{\begin{array}{l}
\ln y=\frac{x \ln 4}{4} \\
x^{2}=4
\end{array}:\right. \text { يبالتالي }\right. \\
& y=\ln 2: \quad y=\frac{1}{2} \ln 4 \quad: x=2 \text { : } \\
& y=-\ln 2 \quad \text { ي }
\end{aligned}
$$

$$
g(x)=\left(\frac{4}{10}\right)^{x-1} \quad g(x)=(0,4)^{x-1}
$$

- $\mathrm{D}=\mathbb{R}$

$$
g(x)=e^{(x-1) \ln \frac{2}{5}}:\left(\frac{2}{5}\right)^{x-1}: \text { dice } g(x)=(
$$

- $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} \mathrm{e}^{(x-1) / n_{\frac{2}{5}}^{2}}=+\infty$

$$
\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} \mathrm{e}^{(x-1) / n / \frac{2}{5}}=0
$$

- $g^{\prime}(x)=\ln \frac{2}{5} \times \mathrm{e}^{(x-1) / \ln \frac{2}{3}}$
\mathbb{R}, رليه: :

x	$-\infty$	$+\infty$	
$g^{\prime}(x)$			
$g(x)$	$+\infty$	0	

: - $y=0$ معاددلة مستقّيم مقارب عند

x	$-\infty$	$\frac{-1}{2}$		$+\infty$	
$2 x+1$		-	0	+	
$f^{\prime}(x)$		-	0	+	

$\left[\frac{-1}{2} ;+\infty[\right.$ الدالهة f متز ايدة تمـامـا على المجال ومتناقصة آمامـا على المجال

x	$-\infty$	$\frac{-1}{2}$		$+\infty$	
$f^{\prime}(x)$		-	0	+	
$f(x)$	$+\infty$				

$$
f\left(\frac{-1}{2}\right)=2^{\frac{3}{4}}
$$

در اسة القروع اللانهـائية و المستقيمات المقاربة :
$\lim _{1 \rightarrow+\infty} \frac{f(x)}{x}=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{\left(x^{2}+x+1\right) \ln 2}}{x}$.

$$
=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{\left(x^{2}+x+1\right) \ln 2}}{\left(x^{2}+x+1\right) \ln 2} \times \frac{\left(x^{2}+x+1\right) \ln 2}{x}=+\infty
$$

و عليه يوجد فرع قطع مكافى باتجاه محور التر اتيب عند
$\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{\left(x^{2}+x+1\right) \ln 2}}{\left(x^{2}+x+1\right) \ln 2} \times \frac{\left(x^{2}+x+1\right) \ln 2}{x}=-\infty$ و عليه يوجد فر ع قَطع مكافئ باتجاه محور التتر اتيب عند مـ

$$
\begin{aligned}
& \begin{array}{|l|llll|}
\hline x & 0 & & \frac{1}{e} & +\infty \\
\hline h^{\prime}(x) & & - & + \\
\hline h(x) & 1 & \\
\\
h\left(\frac{1}{e}\right)=\mathrm{e}^{\frac{1}{e} \ln e} \frac{1}{e} \\
\hline
\end{array} \mathrm{e}^{\frac{-1}{e} \operatorname{lne}}=\mathrm{e}^{\frac{-1}{e}}
\end{aligned}
$$

جـول التنغير ت :

الثروع اللاذهانية و المستقّقمات المقاربة :
$\lim _{x \rightarrow+\infty} \frac{h(x)}{x}=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{\mathrm{x} \operatorname{thn} x}}{x}=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x \ln x}}{x \ln x} \times \operatorname{Ln} x=+\infty$
الثان بوجب فرع قطع مكافئ باتجاه محور التّراتيب.

$$
\begin{aligned}
& f(x)=-2.4^{x}+2: f \text { : } f \text { راسة } \\
& f(x)=-2 \mathrm{e}^{x / n 4}+2
\end{aligned}
$$

- $\left.\boldsymbol{D}_{f}=\right]-\infty ;+\infty[$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left[-2 \mathrm{e}^{x / n 4}+2\right]=2$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left[-2 \mathrm{e}^{x / n 4}+2\right]=-\infty$
$\lim _{x \rightarrow \infty} \frac{g(x)}{x}=\lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{(x-1) \ln \frac{2}{5}}}{x}=\lim _{x \rightarrow \infty} \frac{\mathrm{e}^{(x-1) \ln \frac{2}{5}}}{(x-1) \ln \frac{2}{5}} \times \frac{(x-1) \ln \frac{2}{5}}{x}=-\infty$
و عليه البيان يقبل فر ع قطع مكافى باتجاه محور التر اتيب عند م- .

$$
h(x)=\mathrm{e}^{x \ln x}: \quad h(x)=x^{x}: \text { (3) لـينا }
$$

$\mathrm{D}=] 0 ;+\infty[$
$\lim _{\ggg} h(x)=\lim \mathrm{e}^{x \ln x}=1$
$\lim _{x \rightarrow+\infty} h(x)=\lim _{x \rightarrow+\infty} \mathrm{e}^{x / n x}=+\infty$
$h^{\prime}(x)=\left(1 \cdot \ln x+x \cdot \frac{1}{x}\right) \mathrm{e}^{x \ln x}$

$$
h^{\prime}(x)=(1+\ln x) \mathrm{e}^{x / \ln x}: \text { ! }
$$

$$
x=\frac{1}{\mathrm{e}}: \text { و } \operatorname{ck} \ln x=-1: \text { تكافئ : } \quad h^{\prime}(x)=0
$$

$$
\ln x>-1 \text { : } 1+\ln x>0: \text { تكافئ } h^{\prime}(x)>0
$$

وبالتّلي : $x>\frac{1}{}$

عليه

$:\left(C_{g}\right)$ و $\left(C_{f}\right)$ نقط تقاطُ

$$
-2 e^{x / n 4}+2=2 \mathrm{e}^{\mathrm{x} / n 4}+1: \quad: \quad f(x)=\mathrm{g}(x)
$$

$$
\operatorname{Ln} e^{x / n 4}=\ln \frac{1}{4}: \text { ومنه } e^{x / n 4}=\frac{1}{4}: 4 e^{x / n 4}=1: \text { : }
$$

$$
x=-1: \quad x \ln 4=-\ln 4: \text { : } 1
$$

$$
f(-1)=g(-1)=2 \mathrm{e}^{-\ln 4}+1=2 \mathrm{e}^{\ln \frac{1}{4}}+1=\frac{2}{4}+1=\frac{3}{4}
$$

$$
\cdot\left(C_{f}\right) \cap\left(C_{g}\right)=\left\{\mathrm{A}\left(-1 ; \frac{3}{4}\right)\right\}
$$

$$
D_{f}=\mathbb{R} \quad ; \quad D_{g}=\mathbb{R}
$$

$[g(x)]^{2}-[f(x)]^{2}=\left(\frac{10^{x}+10^{-x}}{2}\right)^{2}-\left(\frac{10^{x}-10^{-x}}{2}\right)^{2}: 12$ (2)

- $f^{\prime}(x)=-2 \operatorname{Ln} 4 \cdot \mathrm{e}^{x L n 4}$

x	$-\infty$	$+\infty$	
$f^{\prime}(x)$		-	
$f(x)$	$2 \longrightarrow+\infty$		

$$
\begin{aligned}
g(x)= & 2 \cdot 4^{x}+1 \quad: \quad \text { دراسة تغير ات } \quad \text { وليه : } 1 \quad \\
& g(x)=2 \cdot \mathrm{e}^{x \ln 4}+1
\end{aligned}
$$

- $\left.D_{f}=\right]-\infty ;+\infty[$
- $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} 2 \mathrm{e}^{x / n 4}+1=1$
$\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} 2 \mathrm{e}^{x / n 4}+1=+\infty$
- $g^{\prime}(x)=2 \ln 4 \cdot \mathrm{e}^{\mathrm{x} \ln 4}$

و وعليه

x	$-\infty$		$+\infty$
$g^{\prime}(x)$		+	
$g(x)$			$+\infty$

در داسة الفروع اللادهائية و المستقيمات المقاربة $y=2$ معادلة مستقيم مقارب للمنحنى $)$ - $\left.C_{g}\right)$ ($y=1$ معادلة مستقّيم مقارب للمنحنى

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{f(x)}{x} & =\lim _{x \rightarrow+\infty} \frac{-2 e^{x \ln 4}+2}{x} \\
& =\lim _{x \rightarrow+\infty} \frac{-2 e^{x / n} 4}{x \ln 4} \times \ln 4+\frac{2}{x}=-\infty
\end{aligned}
$$

و عليه ($)$) يقبل فرع قطع مكافى باتجاه محور التر اتيب عند
$\lim _{x \rightarrow+\infty} \frac{\mathrm{g}(x)}{x}=\lim _{x \rightarrow+\infty} \frac{2 e^{x \ln 4}}{x \ln 4} \times \ln 4+\frac{1}{x}=+\infty$

$$
D_{f}=\mathbb{R}-\{0 ; 1\}: \quad \text { لدينا } \quad f(x)=e^{\frac{1}{x-1} \cdot \ln |x|}
$$

الدالةة f هي جداء و مركب دو ال ناطقة و لوغارتمية و أسبية مستمرة و عليه فهي هستمرة على
 2) احسب النهايات عند أطر افـ مجالات التتريف .
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} e^{\frac{1}{x-1} \cdot \ln |x|}=+\infty$
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} e^{\frac{\ln x}{x-1}}=e$

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} e^{\frac{\ln x}{x} \times \frac{x}{x-1}}=1
$$

$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} e^{\frac{\ln (-x)}{(-x)} x \frac{-x}{x-1}}=1$
 ومنه الادالة g مستمرة عتد 1 . 1 .
(بالْالة) (

در اسة تنغيرات الدالةة f :

$$
f(x)=\mathrm{e}^{x \ln 2}+\mathrm{e}^{-x / n 2} \quad: \quad \text { : } f(x)=2^{x}+2^{-x}: \text { Hax }
$$

- $\left.D_{f}=\right]-\infty ;+\infty[$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} e^{x / n 2}+e^{-x / n 2}=+\infty$
$[g(x)]^{2}-[f(x)]^{2}=\frac{10^{2 x}+2 \cdot 10^{x} \cdot 10^{-x}+10^{-2 x}}{4}-\frac{10^{2 x}-2 \cdot 10^{x} \cdot 10^{-x}+10^{-2 x}}{4}$

$$
=\frac{10^{2 x}+2+10^{-2 x}-10^{2 x}+2-10^{-2 x}}{4}=1
$$

$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{10^{x}-10^{-x}}{2}=\lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{x \ln 10}-\mathrm{e}^{-x \ln 10}}{2}=-\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{10^{x}-10^{-x}}{2}=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x \ln 10}-\mathrm{e}^{-x / n 10}}{2}=+\infty$

$$
f(x)=\frac{e^{x L n 10}-\mathrm{e}^{-x L n 10}}{2}: \text { لدينا }
$$

$$
f^{\prime}(x)=\frac{(\operatorname{Ln} 10) \mathrm{e}^{x \ln 10}+(\operatorname{Ln} 10) \mathrm{e}^{-x / n 10}}{2}:=\text { و ونه }
$$

$$
\text { وعليه : } f^{\prime}(x)>0 \text { ومنه متز ايدة تماما على } \mathbb{R} \text {. }
$$

x	$-\infty$	$+\infty$	
$f^{\prime}(x)$		+	
$f(x)$	$-\infty \xrightarrow{+\infty}$		

$$
f(-2)=\frac{10^{-2}-10^{2}}{2}=\frac{\frac{1}{100}-100}{2}=\frac{-9999}{200}
$$

$$
f(0)=\frac{10^{0}-10^{-0}}{2}=0 \quad\left\{\quad f(-1)=\frac{10^{-1}-10}{2}=\frac{-99}{20}\right.
$$

$$
f(2)=\frac{10^{2}-10^{-2}}{2}=\frac{9999}{200} ; \quad f(1)=\frac{10-10^{-1}}{2}=\frac{99}{20}
$$

$$
D_{f}=\left\{x \in \mathbb{R}: 10^{x}-1 \neq 0\right\}: \text { : مجموعة التتريف }
$$

$$
x=0 \text { : } 10^{x}=1 \text { تكافئ } 10^{x}-1=0
$$

$$
\left.D_{f}=\right]-\infty ; 0[\cup] 0 ;+\infty[: \text { ! } 1
$$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x)= & \lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{x \ln 10}}{e^{x \ln 10}-1}=0 f(x)=\frac{\mathrm{e}^{x \ln 10}}{e^{x \ln 10}-1} \\
& \lim _{x \rightarrow 0} f(x)=+\infty \quad ; \quad \lim _{x \rightarrow 0} f(x)=-\infty
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x \ln 10}}{e^{x \ln 10}-1}=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x / \ln 10}}{e^{x / n 10}\left(1-\frac{1}{\mathrm{e}^{x / n 10}}\right)} \\
& =\lim _{x \rightarrow+\infty} \frac{1}{1-e^{-x \ln 10}}=1
\end{aligned}
$$

$$
f^{\prime}(x) \text { حساب }
$$

$$
f^{\prime}(x)=\frac{(\ln 10) \mathrm{e}^{x / \ln 10} \cdot\left(e^{x \ln 10}-1\right)-\mathrm{e}^{x \ln 10} \cdot(\ln 10) \cdot \mathrm{e}^{\mathrm{x} \ln 10}}{\left(e^{x \ln 10}-1\right)^{2}}
$$

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} e^{x / n 2}+e^{-x / \ln 2}+\infty
$$

- $f^{\prime}(x)=\operatorname{Ln} 2 \cdot \mathrm{e}^{\mathrm{x} \operatorname{tn} 2}-\operatorname{Ln} 2 \cdot \mathrm{e}^{-\mathrm{x} / \ln 2}$

$$
f^{\prime}(x)=\ln 2\left(\mathrm{e}^{x \ln 2}-\mathrm{e}^{-x \ln 2}\right): \mathrm{J}^{3}
$$

$\mathrm{e}^{\mathrm{x} / \mathrm{ln} 2}-\mathrm{e}^{-\mathrm{x} / n 2}=0$: لدينا : $\quad f^{\prime}(x)=0$ $x \ln 2=-x \ln 2: و$ ومنه $\mathrm{e}^{x \ln 2}=\mathrm{e}^{-x \ln 2} \quad$:

$$
\text { إذن : } 2 x=0 \text { : وبالتالي : } 2 x \ln 2=0
$$

$$
2 x \operatorname{Ln} 2>0 \text { ومنه : } \quad x \ln 2>-x \ln 2 \text { : }
$$

$$
\text { إنن : } x>0 \text { ومنه } f \text { متز ايدة تماما . }
$$

| x | $-\infty$ | 0 | $+\infty$ |
| :---: | :---: | :---: | :---: | :---: |
| $f^{\prime}(x)$ | | - | + |
| $f(x)$ | $+\infty \xrightarrow{ } \longrightarrow+\infty$ | | |

" لر اساسة الفروع اللكاههائبة و المستقيمات المقاربة :

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x \ln 2}+\mathrm{e}^{-x \ln 2}}{x}
$$

$$
=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{x \ln 2}}{x \ln 2} \times \ln 2+\frac{1}{x} \cdot \mathrm{e}^{-x \ln 2}=+\infty
$$

إذن يوجد فر ع مكافّئ باتجاه محور التُراتيب عند

$$
\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow-\infty} \frac{1}{x} \cdot \mathrm{e}^{x \ln 2}-\frac{\mathrm{e}^{-x \ln 2}}{-x \ln 2} \times \ln 2=-\infty
$$

الذُ يوجد فر ع قُطع باتجاه محور التتر اتيب عند مـ .
$\lim _{x \rightarrow 0} g(x)=-\infty ; \lim _{x \rightarrow+\infty} g(x)=+\infty$

$$
g^{\prime}(x)=\frac{1}{x}+\frac{1}{x^{2}}: \text { : المشتّق * }
$$

x	0	1	$+\infty$
$g^{\prime}(x)$		+	+
$g(x)$			
$-\infty$	$+\infty$		

وعليه إشثارة

x	0	1	$+\infty$	
$g(x)$		-	0	+

 . $\left.D_{f}=\right] 0 ;+\infty[:$: مجموعة التنريف
$\lim _{\substack{>\\ x \rightarrow 0}} f(x)=\lim _{\substack{>\\ x \rightarrow 0}} e^{(x-1) \ln x}=+\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} e^{(x-1) \ln x}=+\infty$

$$
f^{\prime}(x)=\left(1 \cdot \ln x+(x-1) \frac{1}{x}\right) e^{(x-1) \ln x}
$$

x	0	1	$+\infty$	
$f^{\prime}(x)$		-	0	+

$$
f^{\prime}(x)<0: \operatorname{lin} f^{\prime}(x)=\frac{-\ln 10 \cdot \mathrm{e}^{x \ln 10}}{\left(e^{x \ln 10}-1\right)^{2}}: \text { إذ }
$$.

x	$-\infty$	0		$+\infty$
$f^{\prime}(x)$		-		-

:
لدينا :

$$
\left.D_{o}=\right] 0 ;+\infty[\quad: \quad \text { : }
$$

. لتكن n (n) n (n) خاصية تتعلق بالعدد الطبيع
 . $p\left(n_{0}\right)$.

$$
p(n): 1+2+\ldots+n=\frac{n(n+1)}{2}: \text { هن }
$$

$1+2+\ldots+k=\frac{k(k+1)}{2}:$ ي $p(k)$ أ 1 رألمر هن صحة $1+2+\ldots+k+(k+1)=\frac{(k+1)(k+2)}{2}$
$1+2+\ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)$

$$
\begin{aligned}
& =\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

 (A_{n} يقبل القسمة على

$$
A_{n}=3^{2 n+2}-2^{n+1} \quad: \quad \text { \#n } 7 \text {, }
$$

有 A_{n} يقبل القسمة على العدي
 . $p(k+1)$ (1 و $p(k)$ نبر هن صد

x	0	1	$+\infty$	
$f^{\prime}(x)$		-	0	+
$f(x)$	$+\infty$		$+\infty$	

* در اسة الفرو ع اللادههانية و المسنتقيمات المقاربة : لدينا : $x=0$ معادلة مستقيم مقارب .
$\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=\lim _{x \rightarrow+\infty} \frac{e^{(x-1) \ln x}}{(x-1) \ln x} \times \frac{(x-1) \ln x}{x}$

$$
=\lim _{x \rightarrow+\infty} \frac{e^{(x-1) \ln x}}{(x-1) \ln x} \times \frac{x-1}{x} \times \ln x=+\infty
$$

و عليه بيان الالالة f يقبل فرع قطع مكافئ باتجاه محور التر اتيب عند

3- المتتالية الجسابية :
ـ وهي معرفة بحدها الأول $\boldsymbol{U}_{n+1}=\boldsymbol{U}_{n}+\mathbf{r}, \quad \mathbf{r} \in \mathbb{R}$
r

$$
\begin{aligned}
& U_{n}=U_{0}+n \mathrm{r}, \quad n \geq 0 \quad \text { : و حدها اللعام } \\
& U_{n}=U_{1}+(n-1) \mathrm{r} \quad, \quad n \geq 1 \\
& U_{n}=U_{p}+(n-p) \mathrm{r} \quad, \quad n \geq p \\
& S=U_{0}+U_{1}+\ldots+U_{n} \text { : مجموع حدودها } \\
& \mathrm{S}=\frac{n+1}{2}\left(U_{0}+U_{n}\right)
\end{aligned}
$$

حيث n+1 هو عدد الحدود.
4- المتتالية اللندسية :
. وهي معرفة بحدها الأول

$$
U_{n+1}=U_{n} \times q \quad, \quad q \in \mathbb{R}
$$

و q يسا اللقى أساس المتتالية الهناسية. -

$$
\begin{aligned}
& U_{n}=U_{0} \times q^{n} \quad, \quad n \geq 0 \\
& U_{n}=U_{1} \times q^{n-1} \quad, \quad n \geq 1 \\
& U_{n}=U_{p} \times q^{n-p} \quad, \quad n \geq p \\
& S=U_{0}+U_{1}+\ldots+U_{n}: \text { : } \\
& S=U_{0} \times \frac{1-q^{n+1}}{1-q}: q \neq 1 \mathrm{~W} \\
& S=(n+1) U_{0} \quad: q=1 W
\end{aligned}
$$

n $n \rightarrow+\infty$: ولاينا :
$\lim _{n \rightarrow+\infty} \mathbf{a}^{\mathrm{n}}=\lim _{n \rightarrow+\infty} \mathrm{e}^{\mathrm{n} L n \mathrm{a}}=+\infty, \quad \mathbf{a}>1$
$\lim \mathbf{a}^{\mathrm{n}}=\lim \mathrm{e}^{\mathrm{n} L n \mathrm{a}}=0,0<\mathbf{a}<1$

$$
\begin{aligned}
& =3^{2} \times 3^{2 k+2}-2 \cdot 2^{k+1} \\
& =9 \times 3^{2 k+2}-2 \cdot 2^{k+1} \\
& =(7+2) \times 3^{2 k+2}-2 \cdot 2^{k+1} \\
& =7.3^{2 k+2}+2 \times 3^{2 k+2}-2 \times 2^{k+1} \\
& =7 \cdot 3^{2 k+2}+2 \times\left(3^{2 k+2}-2^{k+1}\right) \\
& \quad A_{k+1}=7 \cdot 3^{2 k+2}+2 \cdot A_{k} \quad: \quad \text { : } 9 \text {, }
\end{aligned}
$$

بما أن :

2- المتتّاليات التّر اجعية :
تُعريف :

$$
\left\{\begin{array}{l}
\boldsymbol{U}_{0}=\alpha \\
\boldsymbol{U}_{n+1}=f\left(\boldsymbol{U}_{n}\right)
\end{array} \quad: \quad\right. \text { نسمي متتالية تراجعية كل متتالية من الشثكل }
$$

$$
\left\{\begin{array}{l}
U_{0}=\alpha ; U_{1}=\beta \\
U_{n+1}=\alpha f\left(U_{n}\right)+\beta f\left(U_{n-i}\right)
\end{array}\right.
$$

$$
U_{1}=4: \text { ومنه } U_{1}=5 U_{0}-1
$$

$$
\text { ومنه : } U_{2}=5 U_{1}-1
$$

$$
\text { مثال } 2 \text { : }
$$

$$
\left\{\begin{array}{l}
U_{0}=2 \\
U_{1}=3 \\
U_{n+1}=2 U_{n}-4 U_{n-1}, n \geq 1
\end{array}\right.
$$

وهي متتالية تر اجعية حيث يمكن حساب باقي الحدود فمثّلا :

$$
\text { ومنه : } U_{3}=2 U_{2}-4 U_{1}: U_{2}=-2 \text { ومنه : } U_{3}=-16 \text { وهكا. }
$$

$$
\begin{aligned}
& \text { وهي متتالية تراجعية حيث يمكن حساب بقية الحدود فمثّلا : }
\end{aligned}
$$

- ضع العلامة ل أمام كل جملة صحيحة و العل大مة x أمام كل جملة خاطئة
U هي منتالية هندسية.

$$
\left(8+9+10+\ldots+100=\frac{(100-7)(8+100)}{2}\right.
$$

$$
\left(1+5+5^{2}+\ldots+5^{100}=\frac{1-5^{100}}{1-5}\right.
$$

$$
\left(10+10^{2}+10^{2}+\ldots+10^{50}=10 \times \frac{1-10^{50}}{1-10}\right.
$$

(6) المتتاليتان (
حبپ
(\%) في منتالية هندسية ((9 من أجل كل عدد طبيعي n. (. $\lim _{n \rightarrow+\infty}(-10)^{n}=-\infty$

انه أنه من أجل كل عدد طييعي n أن :

$$
1+\frac{1}{4}+\frac{1}{4^{n}}+\ldots+\frac{1}{4^{n}}=\frac{4}{3}\left[1-\left(\frac{1}{4}\right)^{n+}\right.
$$

$\lim _{n \rightarrow+\infty} a^{n}=\lim _{n \rightarrow+\infty}(-1)^{n} \times(-a)^{n}=\lim _{n \rightarrow+\infty}(-1)^{n} e^{n L n(-a)}=0$

$$
\text { : a } \text { : - }
$$

$\lim _{n \rightarrow+\infty} \mathrm{a}^{\mathrm{n}}=\lim _{n \rightarrow+\infty}(-1)^{\mathrm{n}} \times(-\mathrm{a})^{\mathrm{n}}=\lim _{n \rightarrow+\infty}(-1)^{\mathrm{n}} \mathrm{e}^{\mathrm{nln}(-\mathrm{a})}$
$\lim _{n \rightarrow+\infty} a^{n}=+\infty$ وهي غير موجودة لاخها غير وحيدة فمن أجل \quad زوجي

$$
\lim _{n \rightarrow+\infty} a^{n}=-\infty \quad \text { ومن أجل فردي n }
$$

$$
\lim _{n \rightarrow+\infty}\left(\frac{-1}{3}\right)^{n}=0: \lim _{n \rightarrow+\infty}\left(\frac{1}{2}\right)^{n}=0: \lim _{n \rightarrow+\infty} 5^{n}=+\infty: \text { امثة }
$$

$$
\text { . غير موجودة } \lim _{n \rightarrow+\infty}(-4)^{n}
$$

6- المتتاليتان المتّجاورتان :
نقول عن المتتاليتان $\lim _{n \rightarrow+\infty}\left(U_{n}-V_{n}\right)=0$: متناقصة و كانت
:
المتتّاليتّان) متجاورتان لانن $V_{n}=\frac{-1}{n} \quad, \quad U_{n}=\frac{1}{n}$ $\lim _{n \rightarrow+\infty}\left(U_{n}-V_{n}\right)=\lim _{n \rightarrow+\infty}\left(\frac{1}{n}-\frac{-1}{n}\right)=\lim _{n \rightarrow+\infty} \frac{2}{n}=0 \quad: \quad$ ولاينا مبرهـة :
إذا كانت

$$
\bullet U_{n} \leq V_{n} \quad, \quad n \in \mathbb{N}
$$

- $\lim _{n \rightarrow+\infty} U_{n}=\lim _{n \rightarrow+\infty} V_{n}=\lambda, \lambda \in \mathbb{R} \quad \bullet U_{n} \leq \lambda \leq V_{n}$

$$
\left\{\begin{array}{l}
X_{0}=\alpha \\
X_{n}=10 X_{n-1}+20, \mathbf{n} \geq 1
\end{array} \text { : متتالية معرفة بالعبارة }\left(X_{n}\right)\right.
$$

(1) عبر عن . $\lim X_{n}$ (احسب التمرين 10 :

$$
\left\{\begin{array}{l}
\mathbf{U}_{0}=0 \\
\mathbf{U}_{n+1}=\frac{1}{3} \mathbf{U}_{n}+\frac{2}{3} \quad: \quad \text { متتالية معرفة كما يلمي }\left(\mathbf{U}_{n}\right)
\end{array}\right.
$$

. $\mathbf{U}_{\mathrm{n}} \geq 1$: برهن بالتر اجع أنه من أجل كل عدد طبيعي nفان
 . برهن أن (
ـ استنتج اتجاه تغير (Vn) .
ـ احسب
3) احسب المجموعين : $. S_{2}=U_{0}+U_{1}+\ldots+U_{n-1} \quad, \quad S_{1}=V_{0}+V_{1}+\ldots+V_{n-1}$

$$
\begin{aligned}
& S_{n}=\mathbf{U}_{0}^{3}+\mathbf{U}_{1}^{3}+\ldots+\mathbf{U}_{n-1}^{3} \text { احسب بدلاة } \\
& \lim _{n \rightarrow+\infty} S_{n} \text { : ثُم احسب }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{0}=0 \\
V_{1}=1 \\
V_{n+1}\left(V_{n}\right)
\end{array}\right. \\
& \text { برهن بالتزاجع أنه من أجل كل عدد طبيعي n فان : } \\
& \mathbf{V}_{\mathrm{n}}=\frac{1}{2^{\mathrm{n}} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}\right]
\end{aligned}
$$

(1 1 $1+x)^{n}$ برهن بالتر اجع على n أنه من أجل كل عدد حقيقي x فابن : 2) ما ها هو التّفسير البياني لهذه الخاصبة. التمرين 5 :

$$
\text { 2) بين أن المتتالية (}{ }^{\text {(}} \text {) متناقصة . }
$$

$$
\text { 3) بين أن المتتالية (}{ }^{\text {(}} \text {) متقّاربة }
$$

$$
\text { (4) احسب : } \lim _{n \rightarrow+\infty} U_{n}
$$

$$
\text { التمرين } 6 \text { : }
$$

التكن المتثتالية
$\mathbf{U}_{\mathrm{n}}-\mathbf{1}=\left(\mathbf{U}_{\mathbf{0}}-\mathbf{1}\right)^{2^{n}}$:
3- ماذا يمكن القول في كل حالة مما يلي :
-

$$
\text { . } \mathrm{U}_{0}>2 \text { ثسب } \mathrm{U}_{0}<0 \text { في حالة } \lim _{n \rightarrow+\infty} \mathrm{U}_{\mathrm{n}}
$$

$$
\left\{\begin{array}{l}
\mathbf{U}_{0}=\frac{1}{2} \\
\mathbf{U}_{\mathrm{n}+1}=\sqrt{\frac{1+\mathbf{U}_{\mathrm{n}}}{2}}, \mathrm{n} \geq 0
\end{array}\right.
$$

لتكن المتتالية المعرفةَ كما يلي :

1-1 برهن بالتتراجع أنه من أجل كل عدد طبيعي n فان : 0 ب
$\mathbf{U}_{\mathrm{n}}=\cos \left(\frac{\pi}{3 \times 2^{n}}\right):$ بر بـ . $\lim _{n \rightarrow+\infty} \mathbf{U}_{\mathbf{n}}$: أستختج

$$
\begin{aligned}
& U_{n+1}=U_{n}^{2}-2 U_{n}+2
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathbf{U}_{0}=16 \\
\mathbf{U}_{n+1}=\sqrt{\mathbf{U}_{n}+20}, \mathbf{n} \geq 0
\end{array} \quad: \quad \text { : } \mathbf{N}_{n}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\mathbf{U}_{0}=0 \\
\mathbf{U}_{n+1}=\frac{3 U_{n}-2}{2 U_{n}-1} \quad ; n \geq 0 \quad: \quad \text { : } n \text { : }\left(U_{n}\right)
\end{array}\right.
$$

$$
\text { 1- برهن أنه من اجل كل عدد طبيعي n فان : } 1 \text {. }
$$

$$
\mathbf{V}_{\mathrm{n}+1}=\frac{1}{\mathbf{U}_{\mathrm{n}}-1}, \mathbf{n} \geq 0 \text { منتّالية معرفة كما يُي : }\left(V_{n}\right)-2
$$

- بين أن

:التُرين 15
($\mathbf{V}_{\mathbf{n}}$) و ($\mathbf{U}_{\mathbf{n}}$)

$$
\text { - احسب المجموع : } S=V_{1}+V_{2}+\ldots+V_{n} .
$$

سعر الكيلوغرام 13 :الو احد من السكر هو 65DA في 1 جانفّي 2006 . نفرض أن سعر الكيلو غزام
الو احد يتز ايد سنويا بنسبةة قدر ها 1) مـا هو سعر اللسكر في 1 جانفي 2007 م $U_{n+1}-U_{n}=0,04 U_{n}:$ (2) عمر
ـ ما هي طبيعة المنتّالية
. U_{1}. احسب
. بـلالة

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathbf{U}_{1} \times \mathbf{U}_{3}=144 \\
\mathbf{U}_{1}+\mathbf{U}_{2}+\mathbf{U}_{3}=63
\end{array} \quad: \quad \text { متتالية هندسية حدودها موجبة حيث }\left(\mathbf{U}_{n}\right)\right. \\
& \text { 1- الحسب كل من q أساس المتتالية و } \\
& \text { 1- الحسب المجاميع : } \\
& \mathbf{S}_{n}^{1}=\mathbf{U}_{1}^{3}+\mathbf{U}_{2}^{3}+\ldots+\mathbf{U}_{n}^{3} \quad, \quad \mathrm{~S}_{\mathrm{n}}=\mathrm{U}_{1}+\mathbf{U}_{2}+\ldots+\mathbf{U}_{\mathrm{n}} \\
& \text { 4- ها هي رتبة أول حد في المتتالية (} 3 \times 10^{-4} \text {. } \\
& V_{n}=\operatorname{Ln} U_{n} \text { : متثالية معرفة كما يلي } \\
& \text { بين أن }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathbf{U}_{0}=12 \\
\mathbf{U}_{n+1}=\frac{U_{n}+2 V_{n}}{3} ; n \geq 0
\end{array}:\left\{\begin{array}{l}
V_{0}=1 \\
V_{n+1}=\frac{U_{n}+3 V_{n}}{4} ; n \geq 0
\end{array}\right.\right. \\
& \text {. } \mathbf{V}_{2}, U_{2}, V_{1}, U_{1} \text { احسب } \\
& \text {. } \mathbf{W}_{n}=\mathbf{U}_{n}-V_{n} \text { : كما يلي } \\
& \text { برهن أن }) \text { (W }) \text { متتالية هندسية متقاربة . } \\
& \text { 3- بين أن المتتاليات (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { برهن أن المتتّالية }
\end{aligned}
$$

$$
f^{(1)}(x)=(a x+b+a) e^{x} \quad: n=1 \text { من أجل }
$$

$$
f^{\prime}(x)=a \cdot \mathrm{e}^{x}+(\mathrm{a} x+b) \mathrm{e}^{x} \text { ولدينا }
$$

وبالتالي :

$$
\text { p }(k+1) \text { صحيحة و نبرهن صحة p (k) نفرض. }
$$

$p(k): \quad f^{(k)}(x)=(a x+b+k a) \mathrm{e}^{x}$
$p(k+1): \quad f^{(k+1)}(x)=(a x+b+(k+1) \mathrm{a}) \mathrm{e}^{x}$

$$
f^{(k+1)}(x)=\left(f^{k}\right)^{\prime}(x) \text { : لدينا }
$$

$$
\begin{aligned}
f^{(k+1)}(x) & =\mathbf{a e}^{x}+(\mathrm{ax}+\mathrm{b}+k \mathrm{a}) \mathrm{e}^{x} \\
= & (\mathrm{ax}+\mathrm{b}+k \mathrm{a}+\mathrm{a}) \mathrm{e}^{x} \\
= & (\mathrm{ax}+\mathrm{b}+(k+1) \mathrm{a}) \mathrm{e}^{x}
\end{aligned}
$$

$p(n):(1+x)^{n} \geq 1+n x \quad: \quad$:

1) البرهان بالتُراجع : $(1+x)^{0} \geq 1+0 \times x \quad$ من أجل $\mathrm{n}=0$ لدينا ومنه : $1 \geq 1$ صحيحة إن 1 (1 (1 p صحيحة. . p
$p(k):(1+x)^{k} \geq 1+k x$

$$
p(k+1):(1+x)^{k+1} \geq 1+(k+1) x
$$

$$
(1+x)^{k} \geq 1+k x
$$

$$
(1+x)^{k}(1+x) \geq(1+k x)(1+x)
$$

$$
(1+x)^{k+1} \geq 1+x+k x+k x^{2}
$$

$$
(1+x)^{k+1} \geq 1+(k+1) x+k x^{2}
$$

$(1+x)^{k+1} \geq 1+(k+1) x \quad: \quad k x^{2} \geq 0$: نك
 (2) التُنسير الـهنداستي :
$f(x)=(1+x)^{n} \quad$: الدالةّ
(C) تمثيكن (C) تيلها البيانيم , بعادلة المـاس عثد النقطة ذات الفاصلة 0 هي :

Jو 1, 11

p $1=1$: $1=\frac{4}{3}\left[1-\frac{1}{4}\right]$

$$
\mathrm{p}(k): 1+\frac{1}{4}+\frac{1}{4^{2}}+\ldots+\frac{1}{4^{k}}=\frac{4}{3}\left[1-\left(\frac{1}{4}\right)^{k+1}\right]
$$

- نفرض صحة

$$
\mathrm{p}(k+1): 1+\frac{1}{4}+\frac{1}{4^{2}}+\ldots+\frac{1}{4^{k}}+\frac{1}{4^{k+1}}=\frac{4}{3}\left[1-\left(\frac{1}{4}\right)^{k+2}\right]
$$

$$
1+\frac{1}{4}+\frac{1}{4^{2}}+\ldots+\frac{1}{4^{k}}+\frac{1}{4^{k+1}}=\frac{4}{3}\left[1-\left(\frac{1}{4}\right)^{k+1}\right]+\frac{1}{4^{k+1}}: \frac{1}{4}
$$

$$
=\frac{4}{3}\left[1-\left(\frac{1}{4}\right)^{k+1}+\frac{3}{4} \times \frac{1}{4^{k+1}}\right]
$$

$$
=\frac{4}{3}\left[1-\frac{1}{4^{k+1}}\left(1-\frac{3}{4}\right)\right]
$$

$$
=\frac{4}{3}\left[1-\frac{1}{4^{k+2}}\right]
$$

ومنه

ومنه $\mathbf{U}_{\mathrm{n}+1}-\mathbf{U}_{\mathrm{n}} \leq 0$ وعليه O_{N} متناقصة تماما.
3) المتتالية (${ }^{\text {(}}$) : $\lim _{n \rightarrow+\infty} \mathrm{U}_{\mathrm{n}}$ (4) حساب

$$
\lim _{n \rightarrow++\infty} \mathbf{U}_{\mathrm{n}+1}=\ell \text { نفرض } \lim _{n \rightarrow++\infty} \mathbf{U}_{\mathrm{n}}=\ell \rightarrow+\infty
$$

$$
\lim _{n \rightarrow+\infty} \mathbf{U}_{\mathrm{n}+1}=\lim _{n \rightarrow+\infty} \sqrt[n \rightarrow++\infty]{\mathbf{U}_{\mathrm{n}}+20} \text { ولدينا } \mathbf{U}_{\mathrm{n}+1} \stackrel{n \rightarrow+\infty}{=} \sqrt{\mathbf{U}_{\mathrm{n}}+20}
$$

$$
\begin{equation*}
\ell^{2}-\ell-20=0 \text { أن } \quad \ell^{2}=\ell+20 \text { إن } \ell=\sqrt{\ell+20} \tag{وعليه}
\end{equation*}
$$

$$
\text { ، السابق للمعادلة حاين } 5 \text { (مقبول) و 4- (مرفوض) إذن : } 5 \text { = }
$$

التمرين 6 :
Un $U_{n+1}-1=U_{n}^{2}-2 U_{n}+2-1$: لدينا :
$\mathbf{U}_{\mathrm{n}+1}-\mathbf{1}=\mathrm{U}_{\mathrm{n}}^{2}-2 \mathrm{U}_{\mathrm{n}}+\mathbf{1}:$:

$$
U_{n+1}-\mathbf{1}=\left(U_{n}-\mathbf{1}\right)^{2}
$$

$\mathrm{U}_{\mathrm{n}}-1=\left(\mathrm{U}_{0}-1\right)^{2^{n}}: \mathrm{p}(\mathrm{n})$ البر هان بالتّراجع على صدة

$$
\mathbf{U}_{0}-\mathbf{1}=\left(\mathbf{U}_{0}-1\right)^{2^{0}} \quad: n=0 \text { بن }
$$

 p (k+1) ونبرهن صحة p (k) منرض صحة

$$
\begin{aligned}
& p(k): U_{k}-1=\left(U_{0}-1\right)^{2^{k}} \\
& p(k+1): U_{k+1}-1=\left(U_{0}-1\right)^{2^{k+1}}
\end{aligned}
$$

$$
\mathrm{U}_{\mathrm{k}+1}-\mathbf{1}=\left(\mathrm{U}_{\mathrm{k}}-\mathbf{1}\right)^{2}
$$

الدينا من (1) :
. n صحيحة من أجل كل عدد طبيعي p (n)

$$
U_{n}-1=(1-1)^{2^{\prime \prime}}=0
$$

$$
\text { ومنه } \left.\mathbf{U}_{n}=1 \text { وعليه }\right) \text { متنالية ثابتة . }
$$

$$
\begin{aligned}
& \mathbf{U}_{\mathrm{k}+1}-\mathbf{1}=\left[\left(\mathrm{U}_{0}-1\right)^{2^{k}}\right]^{2} \quad: \quad: \quad \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } \mathrm{p}(\mathrm{k}+1) \\
& \text { : }
\end{aligned}
$$

$$
\begin{array}{r}
f^{\prime}(x)=\mathrm{n}(1+x)^{\mathrm{n}-1}: f(0)=(1+0)^{\mathrm{n}}=0: \text { ونه : } \mathrm{N}: \mathrm{t}
\end{array}
$$

$$
\text { وبالتالي معادلة الكماس هي : } y=1+\mathbf{n} x \text {. }
$$

$$
f(x) \geq y: 1+x)^{n} \geq 1+n x \text { و بما أن : }
$$ فإن البيان (C) يقع فوق الثماس .

$p(n): \quad \mathrm{U}_{\mathrm{n}} \geq 5 \quad$: نفرض
 $p(k+1): \quad U_{k+1} \geq 5 ; p(k): U_{k} \geq 5$: لدينا $U_{k}+20 \geq 25 \quad: \quad \mathbf{U}_{k} \geq 5$: منت $\mathbf{U}_{k+1} \geq 5$: . صمنه 2) تبيان أن

$$
\mathbf{U}_{\mathrm{n}+1}-\mathbf{U}_{\mathrm{n}}=\sqrt{\mathbf{U}_{\mathrm{n}}+\mathbf{2 0}}-\mathbf{U}_{\mathrm{n}}
$$

$$
\begin{aligned}
& =\frac{\left(\sqrt{U_{n}+20}-U_{n}\right)\left(\sqrt{U_{n}+20}+U_{n}\right)}{\sqrt{U_{n}+20}+U_{n}} \\
& =\frac{U_{n}+20-U_{n}^{2}}{\sqrt{U_{n}+20}+U_{n}}=\frac{-U_{n}^{2}+U_{n}+20}{\sqrt{U_{n}+20}+U_{n}}
\end{aligned}
$$

$$
\text { لاينا : لانْ : } \mathbf{U}_{\mathrm{n}} \geq 5 \sqrt{\mathbf{U}_{\mathrm{n}}+20}+\mathbf{U}_{n}>0
$$

$$
\text { ومنه إشارة } \mathbf{U}_{n}^{2}+\mathbf{U}_{n}+20 \text { من إشارة : } \mathbf{U}_{n+1}-U_{n}
$$

$$
\Delta=(1)^{2}-4(-1)(20)=81 \text { : لدينا }
$$

$0 \leq \mathbf{U}_{k+1} \leq 1: 1$: $\frac{\sqrt{2}}{2} \leq \mathbf{U}_{k+1} \leq 1: 1$: ومنه

$$
\mathrm{U}_{\mathrm{n}}=\cos \left(\frac{\pi}{3 \times 2^{n}}\right): \mathrm{p}(\mathrm{n}) \text { البر هان عثى صحة }
$$

.
 $\mathrm{p}(\mathrm{k}): \mathrm{U}_{\mathrm{k}}=\cos \left(\frac{\pi}{3 \times 2^{k}}\right):$ لدينا

$$
p(k+1): U_{k+1}=\cos \left(\frac{\pi}{3 \times 2^{k+1}}\right)
$$

$$
\text { , لدينا : } \mathbf{U}_{k+1}=\sqrt{\frac{1+U_{k}}{2}} \text {, }
$$

$$
\begin{aligned}
\mathrm{U}_{\mathrm{k}+1} & =\sqrt{\frac{1+\cos \left(\frac{\pi}{3 \times 2^{\mathrm{k}}}\right)}{2}} \\
& =\sqrt{\frac{1+2 \cos ^{2}\left(\frac{\pi}{3 \times 2^{k} \times 2}\right)-1}{2}} \\
& =\sqrt{\frac{2 \cos ^{2}\left(\frac{\pi}{3 \times 2^{k+1}}\right)}{2}}=\left|\cos \left(\frac{\pi}{3 \times 2^{k+1}}\right)\right|
\end{aligned}
$$

$$
p(k+1) \text { ! } \mathbf{U}_{k+1}=\cos \left(\frac{\pi}{3 \times 2^{k+1}}\right) \quad \mathbf{U}_{\mathrm{n}} \geq 0 \text { كنـ }
$$

صحيحة وعايه الخاصية (n) صحيحة من أجل كل عدد طبيعي n .
$\lim _{n \rightarrow+\infty} \mathbf{U}_{\mathrm{n}}: \mathrm{e}^{\text {ج }}$
$\lim _{n \rightarrow+\infty} 2^{n}=+\infty:$ لا $\lim _{n \rightarrow+\infty} \mathbf{U}_{n}=\lim \cos _{n \rightarrow+\infty}\left(\frac{\pi}{3 \times 2^{n}}\right)=1$: 4nd
: $\left.\mathrm{U}_{0} \in\right] 0 ; 1$ [4 $\mathrm{U}_{\mathrm{n}}=1+\left(\mathrm{U}_{0}-1\right)^{2^{n}} \quad$ ومنه $\quad \mathrm{U}_{\mathrm{n}}-1=\left(\mathrm{U}_{0}-1\right)^{2^{n}} \quad$: وينا
$\lim _{n \rightarrow+\infty} 2^{n}=+\infty$: ولدينا
. $\lim _{n \rightarrow+\infty} \mathrm{U}_{\mathrm{n}}=1$: فإن : $0<\mathrm{U}_{0}-1<1$: لاينا $\left.\mathrm{U}_{0} \in\right] 1 ; 2[$ في حالة

$$
\lim _{n \rightarrow+\infty}\left(\mathrm{U}_{0}-1\right)^{2^{n}}=0 \quad \text { و بما أن : } \quad \lim _{n \rightarrow+\infty} 2^{n}=+\infty
$$

$\lim _{n \rightarrow+\infty} \mathrm{U}_{\mathrm{n}}=\lim _{n \rightarrow+\infty} 1+\left(\mathrm{U}_{0}-1\right)^{2^{n}}=1 \quad$:
: $\mathrm{U}_{0}<0$ (5
$\lim _{n \rightarrow+\infty} 2^{n}=+\infty \quad, \quad U_{0}-1<-1:$ بما أن :
. فأن :

$$
\mathbf{U}_{0}>2 \text { في حالة } \lim _{n \rightarrow+\infty} \mathbf{U}_{n} \text { حساب - }
$$

$\lim _{n \rightarrow+\infty} 2^{n}=+\infty$, $\mathbf{U}_{0}-1>1$: 1 أن
. $\lim _{n \rightarrow+\infty} \mathrm{U}_{\mathrm{n}}=+\infty$: و $\lim _{n \rightarrow+\infty}\left(\mathrm{U}_{0}-1\right)^{2^{n}}=+\infty$:
$0 \leq \mathrm{U}_{\mathrm{n}} \leq 1: p(n)$ (1) البر هان على صحة

- من أجل
-

$$
p(k+1): 0 \leq U_{k+1} \leq 1 \quad p(k): 0 \leq U_{k} \leq 1
$$

$$
1 \leq 1+U_{k} \leq 2 \text { :لدينا : } 0 \leq U_{k}^{\text {و }} \text { : }
$$

$$
\frac{\sqrt{2}}{2} \leq \sqrt{\frac{1+U_{k}}{2}} \leq 1 \text { وعمنه } \frac{1}{2} \leq \frac{1+U_{k}}{2} \leq 1:
$$

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{n}}-1=(2-1)^{2^{n}}=1 \quad \text { : لدينا } \mathrm{U}_{0}=2 \text { في حالة }
\end{aligned}
$$

$: \lim _{n \rightarrow+\infty} X_{n}$ حساب-2
ومنه من أجل : $\lim _{x \rightarrow+\infty} 10^{n}=+\infty$:
$\lim _{x \rightarrow+\infty} X_{n}=\frac{-20}{9}$ ومنة $X_{n}=\frac{-20}{9}$: $\alpha=\frac{-20}{9}$ it Lu. $\alpha>\frac{-20}{9}:$ من $\lim _{x \rightarrow+\infty} X_{n}=+\infty$ $\alpha<\frac{-20}{9}$: $\lim _{x \rightarrow+\infty} X_{n}=-\infty$
$\mathbf{U}_{\mathrm{n}} \geq 1 \quad$ (n n)

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{n}}=\frac{1}{2^{n} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}\right]: \mathrm{p}(\mathrm{n}) \text { البرهان على صحة } \\
& \mathbf{V}_{0}=\frac{1}{2^{0} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{0}-(1-\sqrt{5})^{0}\right]=0 \quad: \mathrm{n}=0 \quad \mathrm{a} \text {) }
\end{aligned}
$$

- p
$\mathrm{p}(\mathrm{k}): \mathrm{V}_{\mathrm{k}}=\frac{1}{2^{k} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k}-(1-\sqrt{5})^{k}\right]$
$\mathrm{p}(\mathrm{k}+1): \mathrm{V}_{\mathrm{k}+1}=\frac{1}{2^{k+1} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k+1}-(1-\sqrt{5})^{k+1}\right]$
$\mathbf{V}_{k+1}=\mathbf{V}_{k}+V_{k-1}$:لدينا
$\mathrm{V}_{\mathrm{k}+1}=\frac{1}{2^{k} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k}-(1-\sqrt{5})^{k}\right]$
$+\frac{1}{2^{k-1} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k-1}-(1-\sqrt{5})^{k-1}\right]$
$=\frac{1}{2^{k} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k}-(1-\sqrt{5})^{k}+2(1+\sqrt{5})^{k-1}-2(1-\sqrt{5})^{k-1}\right]$
$=\frac{1}{2^{k} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k-1}(1+\sqrt{5}+2)-(1-\sqrt{5})^{k-1}(1-\sqrt{5}+2)\right]$
$=\frac{1}{2^{k} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k-1}(3+\sqrt{5})-(3+\sqrt{5})^{k-1}(1-\sqrt{5})\right]$
$=\frac{1}{2^{k+1} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k-1}(1+2 \sqrt{5}+5)^{k}-(1-\sqrt{5})^{k-1}(1-2 \sqrt{5}+5)\right]$
$=\frac{1}{2^{k+1} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k-1}(6+2 \sqrt{5})-(1+\sqrt{5})^{k-1}(6-2 \sqrt{5})\right]$
$=\frac{1}{2^{k+1} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k-1}(1+\sqrt{5})^{2}-(1-\sqrt{5})^{k-1}(1-\sqrt{5})^{2}\right]$
$=\frac{1}{2^{k+1} \cdot \sqrt{5}}\left[(1+\sqrt{5})^{k+1}-(1-\sqrt{5})^{k+1}\right]$

$$
\begin{array}{ll}
10^{0} \times & X_{\mathrm{n}}=10 X_{\mathrm{n}-1}+20 \\
10^{1} \times & X_{\mathrm{n}-1}=10 X_{\mathrm{n}-2}+20 \\
10^{2} \times & X_{\mathrm{n}-2}=10 X_{\mathrm{n}-3}+20 \\
& \\
10^{n-3} \times & X_{3}=10 X_{2}+20 \\
10^{n-2} \times & X_{2}=10 X_{1}+20 \\
10^{n-1} \times & X_{1}=10 X_{0}+20 \\
& X_{n}=10^{\mathrm{n}} \cdot X_{0}+20\left(10^{0}+10^{1}+10^{2}+\ldots+10^{\mathrm{n-1}}\right):\left({ }^{2}\right) \\
& X_{n}=10^{\mathrm{n}} \cdot X_{0}+20.1 \cdot \frac{1-10^{\mathrm{n}}}{1-10} \\
X_{n}=10^{\mathrm{n}} \cdot & X_{0}-\frac{20}{9}\left(1-10^{\mathrm{n}}\right) \\
X_{n}=10^{\mathrm{n}} \cdot & \alpha-\frac{20}{9}\left(1-10^{\mathrm{n}}\right)
\end{array}
$$

$$
X_{n}=\left(\alpha+\frac{20}{9}\right) 10^{\mathrm{n}}-\frac{20}{9}
$$

$$
\begin{aligned}
S_{2} & =U_{0}+U_{1}+\ldots+U_{n-1} \\
S_{2} & =\left(V_{0}+1\right)+\left(V_{1}+1\right)+\ldots+\left(V_{n-1}+1\right) \\
& =\left(V_{0}+V_{1}+\ldots+V_{n-1}\right)+(\underbrace{1+1+\ldots+1}_{\text {b~n }}) \\
S_{2} & =S_{1}+\mathbf{n} \times 1 \\
S_{2} & =\frac{9}{2}\left[1-\left(\frac{1}{3}\right)^{n}\right]+\mathbf{n}
\end{aligned}
$$

$$
\begin{aligned}
S_{n}= & \mathbf{U}_{0}^{3}+\mathbf{U}_{1}^{3}+\ldots+\mathbf{U}_{n-1}^{3} \\
S_{n}= & \left(\mathbf{V}_{0}+1\right)^{3}+\left(\mathbf{V}_{1}+1\right)^{3}+\ldots+\left(\mathbf{V}_{n-1}+1\right)^{3} \\
S_{n}= & \left(\mathbf{V}_{0}^{3}+3 \mathbf{V}_{0}^{2}+3 \mathbf{V}_{0}+\mathbf{1}\right)+\left(\mathbf{V}_{1}^{3}+3 \mathbf{V}_{1}^{2}+3 \mathbf{V}_{1}+1\right) \\
& \quad+\ldots+\left(\mathbf{V}_{\mathrm{n}-1}^{3}+3 \mathbf{V}_{\mathrm{n}-1}^{2}+3 \mathbf{V}_{\mathrm{n}-1}+1\right) \\
& \left.\quad \ldots+\mathbf{V}_{n-1}^{2}\right) \\
S_{n}= & \left.\mathbf{V}_{0}^{3}+\mathbf{V}_{1}^{3}+\ldots+\mathbf{V}_{0}^{2}+\mathbf{V}_{1}^{2}+\ldots+\mathbf{V}_{n-1}^{3}\right)
\end{aligned}
$$

$$
+3\left(V_{0}+V_{1}+\ldots+V_{n-1}\right)+\underbrace{1+1+\ldots+1}_{j \mu n}
$$

$$
S_{n}=\mathbf{V}_{0}^{3}+\left(\mathbf{V}_{0} \mathbf{q}\right)^{3}+\ldots+\left(\mathbf{V}_{0} \mathbf{q}^{n-1}\right)^{3}+3\left[\mathbf{V}_{0}^{2}+\left(\mathbf{V}_{0} \mathbf{q}\right)^{2}+\ldots+\left(\mathbf{V}_{0} \mathbf{q}^{n-1}\right)^{2}\right]
$$

$$
+3 \mathrm{~S}_{1}+\mathrm{n}_{\bullet} \cdot 1
$$

$$
S_{n}=V_{0}^{3}\left[1+q^{3}+q^{6}+\ldots+q^{3(n-1)}\right]+3 \mathbf{V}_{0}^{2}\left[1+q^{2}+q^{4}+\ldots+q^{2(n-1)}\right]+3 S_{1}+n
$$

$$
S_{n}=\mathbf{V}_{0}^{3} \times \frac{1-\left(q^{3}\right)^{n}}{1-q^{3}}+3 \mathbf{V}_{0}^{2} \cdot \frac{1-\left(q^{2}\right)^{n}}{1-q^{2}}+3 S_{1}+n
$$

$$
S_{n}=V_{0}^{3} \times \frac{1-q^{3 n}}{1-q^{3}}+3 V_{0}^{2} \cdot \frac{1-q^{2 n}}{1-q^{2}}+3 S_{1}+n
$$

$$
S_{n}=3^{3} \times \frac{1-\left(\frac{1}{3}\right)^{3 n}}{1-\left(\frac{1}{3}\right)^{3}}+3(3)^{2} \cdot \frac{1-\left(\frac{1}{3}\right)^{2 n}}{1-\left(\frac{1}{3}\right)^{2}}+3 S_{1}+n
$$

$$
\text { 2- نبر هن أن } \text { أن }) \text { متتالية هنـسية : }
$$

$$
V_{n+1}=U_{n+1}-1=\frac{1}{3} U_{n}+\frac{2}{3}-1=\frac{1}{3} U_{n}-\frac{1}{3}
$$

$$
\mathbf{V}_{n+1}=\frac{1}{3} \mathbf{V}_{n}: \quad \mathbf{V}_{\mathrm{n}+1}=\frac{\mathbf{1}}{3}\left(\mathbf{U}_{\mathrm{n}}-\mathbf{1}\right) \quad: \quad \text { بالتالـي }
$$

$$
\text { وعليه : } q=\frac{1}{3} \text {. }{ }^{\text {متتالية هندسية أسساسها }}
$$

ـ استنتّاج اتجاه تثير (Vn () :
بما أن

$$
\text { و للدينا : } 0<q<1 \text { فن } \text { (Vn) متناقصة تماما }
$$

$$
\mathbf{V}_{\mathrm{n}}=3\left(\frac{1}{3}\right)^{n}: \quad \mathrm{V}_{\mathrm{n}}=\mathrm{V}_{0} \times \mathbf{q}^{n}
$$

$$
\mathbf{U}_{\mathrm{n}}=\frac{1}{3^{n-1}}+1: \quad: \quad \mathbf{U}_{\mathrm{n}}=\mathbf{V}_{\mathrm{n}}+1 \quad, \mathbf{V}_{\mathrm{n}}=\frac{1}{3^{n-1}}: \text { ! }
$$

3- حساب المجموعين S S S S

$$
\begin{aligned}
& S_{1}=V_{0} \times \frac{1-q^{n}}{1-q}=3 \times \frac{1-\left(\frac{1}{3}\right)^{n}}{1-\frac{1}{3}} \\
& S_{1}=\frac{9}{2}\left[1-\left(\frac{1}{3}\right)^{n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& p(k): \mathbf{U}_{\mathrm{k}} \geq \mathbf{1} \\
& p(\mathrm{k}+1): \mathrm{U}_{\mathrm{k}+1} \geq \mathbf{1} \\
& \frac{1}{3} \mathbf{U}_{k} \geq \frac{1}{3}: \mathbf{U}_{k} \geq 1: \text { ومنه } \\
& \text {. } \mathbf{U}_{k+1} \geq 1 \text { و } \frac{1}{3} \mathbf{U}_{k}+\frac{2}{3} \geq \frac{1}{3}+\frac{2}{3} \text { : }
\end{aligned}
$$

$$
\mathbf{V}_{\mathrm{n}}=-\left(\frac{-1}{3}\right)^{n-2} \quad: \quad:
$$

$$
\text { 3- حساب } S_{n} \text { بدلاة n : }
$$

$$
S_{n}=V_{2} \times \frac{1-q^{n-1}}{1-q} \quad \text { عدد الحدود : } \quad \text { و منه }
$$

$$
S_{n}=-1 \times \frac{1-\left(-\frac{1}{3}\right)^{n-1}}{1-\left(-\frac{1}{3}\right)}=\frac{-3}{4} \times\left[1-\left(-\frac{1}{3}\right)^{n-1}\right]: \text { ومنه }
$$

$$
S_{n}=-\frac{3}{4}\left[1-\left(-\frac{1}{3}\right)^{n-1}\right]: \text { ذن }
$$

4-حساب
$S_{n}=V_{2}+V_{3}+\ldots+V_{n}$
$S_{n}=\left(U_{2}-U_{1}\right)+\left(U_{3}-\mathbf{U}_{2}\right)+\left(U_{4}-U_{3}\right)+\ldots+\left(U_{n}-U_{n-1}\right)$
$S_{n}=\mathbf{U}_{\mathrm{n}}-\mathbf{U}_{1}$
: 12 الil

1) حساب سعر السكر في سنة 2007 .

الثرض ${ }^{\text {U }}$ سعر السكر في سنة 2006 ،فيكون 207 سعر السكر في سنة 2007 .

$$
\begin{aligned}
& \mathbf{U}_{2}=\mathbf{U}_{1}+\mathbf{U}_{1} \times \frac{4}{100}=\mathbf{U}_{1}+\mathbf{U}_{1} \times 0,04 \\
& \mathbf{U}_{2}=1,04 \times 65: \mathbf{U}_{2}=1,04 \cdot \mathbf{U}_{1}
\end{aligned}
$$

67,6 DA : ومنه سعر السكر في سنة 2007 هو $\mathrm{U}_{2}=67,6$:
:
$\mathrm{U}_{\mathrm{n}+1}=\mathbf{U}_{\mathrm{n}}+\mathbf{0 , 0 4 \mathbf { U } _ { \mathrm { n } }}:$: $\mathrm{U}_{\mathrm{n}+1}-\mathrm{U}_{\mathrm{n}}=\mathbf{0}, 04 \mathrm{U}_{\mathrm{n}}$
 $\mathbf{U}_{n}=\mathbf{U}_{1} \times(1,04)^{n-1}: \mathbf{U}_{n}=\mathbf{U}_{1} \times q^{n-1}: \mathbf{U}_{1}$ g n بدنالال \mathbf{U}_{n}

$$
S_{n}=U_{1} \times \frac{1-q^{n}}{1-q} \quad: \quad \text { : لينا } \quad S_{n}
$$

$$
S_{n}=27 \times \frac{1-\left(\frac{1}{3}\right)^{3 n}}{1-\frac{1}{27}}+27 \frac{1-\left(\frac{1}{3}\right)^{2 n}}{1-\frac{1}{9}}+3 S_{1}+n
$$

$$
S_{n}=\frac{(27)^{2}}{26}\left[1-\left(\frac{1}{3}\right)^{3 n}\right]+\frac{27 \times 9}{8}\left[1-\left(\frac{1}{3}\right)^{2 n}\right]+3 S_{1}+n
$$

$$
S_{n}=\frac{729}{26}\left[1-\left(\frac{1}{3}\right)^{3 n}\right]+\frac{243}{8}\left[1-\left(\frac{1}{3}\right)^{2 n}\right]+3 \times \frac{9}{2}\left[1-\left(\frac{1}{3}\right)^{n}\right]+\mathrm{n}
$$

$$
S_{n}=\frac{729}{26}\left[1-\left(\frac{1}{3}\right)^{3 n}\right]+\frac{243}{8}\left[1-\left(\frac{1}{3}\right)^{2 n}\right]+\frac{27}{2}\left[1-\left(\frac{1}{3}\right)^{n}\right]+\mathrm{n}
$$

$$
\lim _{n \rightarrow+\infty} \mathrm{S}_{\mathrm{n}}=+\infty: \text { ل } \lim _{n \rightarrow+\infty}\left(\frac{1}{3}\right)^{3 n}=\lim _{n \rightarrow+\infty}\left(\frac{1}{3}\right)^{2 n}=\lim _{n \rightarrow+\infty}\left(\frac{1}{3}\right)^{n}=0
$$

$$
V_{n}=\mathbf{U}_{\mathrm{n}}-\mathbf{U}_{\mathrm{n}-1}=\frac{2 \mathbf{U}_{\mathrm{n}-1}+\mathbf{U}_{\mathrm{n}-2}}{3}-\mathbf{U}_{\mathrm{n}-1}
$$

$$
V_{n}=\frac{-U_{n-1}+U_{n-2}}{3}=-\frac{1}{3}\left(U_{n-1}-U_{n-2}\right)
$$

$$
V_{n}=-\frac{1}{3} V_{n-1} \quad: \quad \text { ! }
$$

2

$$
\text { وحدها الأول } 1
$$

: n : كتابة
$V_{n}=V_{2} \times q^{n-2}=(-1) \times\left(\frac{-1}{3}\right)^{n-2}$

$$
\lim _{n \rightarrow+\infty} U_{n}=\lim _{n \rightarrow+\infty}(-1+2 n)=+\infty
$$

$$
\lim _{n \rightarrow+\infty} U_{n}=\lim _{n \rightarrow+\infty} \frac{2 n}{2 n-1}=\lim _{n \rightarrow+\infty} \frac{2 n}{2 n}=1
$$

$$
\mathrm{U}_{1}=\frac{\mathrm{U}_{0}+2 \mathrm{~V}_{0}}{3}=\frac{12+2}{3}=\frac{14}{3} \quad . \quad \mathrm{V}_{1}=\frac{\mathrm{U}_{0}+3 \mathrm{~V}_{0}}{4}=\frac{12+9}{4}=\frac{21}{4}
$$

ومنه:

$$
\mathbf{V}_{\mathrm{n}}=65 \times(1,04)^{n-1} \quad \text { بذن }
$$

$$
V_{15}=65(1,04)^{14} \text { ويكون }
$$

$$
(1,04)^{n-1} \geq 3 \text { علع } \mathrm{V}_{1} \times(1,04)^{n-1} \geq 3 \mathrm{~V}_{1}: \mathrm{V}_{\mathrm{n}} \geq 3 \mathrm{~V}_{1}
$$

$$
\text { (} \mathrm{n}-1) \ln (1,04) \geq \ln 3 \text { : وليه : } \ln (,, 04)^{n-1} \geq \ln 3
$$

$$
\mathrm{n} \geq 1+\frac{\ln 3}{\ln (1,03)}:(\mathrm{n}-1) \geq \frac{\operatorname{Ln} 3}{\operatorname{Ln}(1,03)}: \text { ي }
$$

وعليه: 39 n 39 ومنه ابتداء منن. 39 سنة يصير سبع السكر أكبر من 3 أضعاف ما كان عليّه في سنة 2006 .

1) البرهان على صحة الخاصية (n
ـ من اجبل

$$
\begin{aligned}
& \text { p(k+1) نفرض صحة } \\
& p(k+1): U_{k+1} \neq 1 \quad s(k): U_{k} \neq 1 \\
& \text { لتنبرهن بالعكس النقيض : } \\
& \mathbf{U}_{K}=1 \text { نفرض } \mathbf{U}_{k+1}=1
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}=\mathbf{U}_{1} \times \frac{1-(1,04)^{n}}{1-1,04}=\mathbf{U}_{1} \times \frac{1-(1,04)^{n}}{-0,04} \\
& S_{n}=\frac{-100 \mathrm{U}_{1}}{4}\left[1-(1,04)^{n}\right]=25 \mathrm{U}_{1}\left[(1,04)^{n}-1\right] \\
& \text { 3) نفرض Vn سعر السكر في سنة } \\
& V_{n+1}=V_{n}+V_{n} \times \frac{4}{100}:{ }^{n} \text { : } \\
& \mathbf{V}_{\mathrm{n}+1}=1,04 \mathrm{~V}_{\mathrm{n}} \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& 3 \mathrm{U}_{\mathrm{k}}-\mathbf{2}=\mathbf{2} \mathrm{U}_{\mathrm{k}}-1 \text { : } \frac{3 \mathrm{U}_{\mathrm{k}}-2}{2 \mathrm{U}_{\mathrm{k}}-1}=1 \text { : } \mathrm{U}_{\mathrm{k}+1}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { أن الخاصية صحيحة من اجل كل عد طـي } \\
& \text { 2) نبر هن أن (() متتالية حسابية : } \\
& V_{n+1}-V_{n}=\frac{1}{U_{n+1}-1}-\frac{1}{U_{n}-1}=\frac{1}{\frac{3 U_{n}-2}{2 U_{n}-1}-1}-\frac{1}{U_{n}-1} \\
& =\frac{2 U_{n}-1}{U_{n}-1}-\frac{1}{U_{n}-1}=\frac{2 U_{n}-2}{U_{n}-1}=\frac{2\left(U_{n}-1\right)}{U_{n}-1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{0}=-1 \text { : } \mathrm{V}_{0}=\frac{1}{\mathrm{U}_{0}-1} \text { ومنه }
\end{aligned}
$$

$$
\begin{aligned}
& V_{n}\left(U_{n}-1\right)=1 \quad: \quad \text { a } \quad V_{n=}=\frac{1}{U_{n}-1}: \text { Lud } \\
& \text { : وبالتالي } \mathbf{U}_{\mathrm{n}}=\frac{1+\mathbf{V}_{\mathrm{n}}}{\mathbf{V}_{\mathrm{n}}} \text { : } \mathbf{V}_{\mathrm{n}} \cdot \mathbf{U}_{\mathrm{n}}=1+\mathbf{V}_{\mathrm{n}} \text { : } \\
& . U_{n}=\frac{2 n}{2 n-1} \text { : ن } \ddagger U_{n=}=\frac{1-1+2 n}{-1+2 n}
\end{aligned}
$$

：n بدلالهn

$$
\left\{\begin{array}{l}
3 \mathrm{U}_{\mathrm{n}}+8 \mathrm{~V}_{n}=44 \\
\mathrm{U}_{\mathrm{n}}-\mathrm{V}_{n}=11\left(\frac{1}{12}\right)^{n}
\end{array}\right.
$$

$$
\text { ورضرب المساو اة الثانية في } 8 \text { نجد : }
$$

$$
\left\{\begin{array}{l}
3 \mathrm{U}_{\mathrm{n}}+8 \mathrm{~V}_{n}=44 \\
8 \mathrm{U}_{\mathrm{n}}-8 \mathrm{~V}_{n}=88\left(\frac{1}{12}\right)^{n}:
\end{array}\right.
$$

$\mathrm{U}_{\mathrm{n}}=4+8\left(\frac{1}{12}\right)^{n}: 11 \mathrm{U}_{\mathrm{n}}=44+88\left(\frac{1}{12}\right)^{n}:$ ومنه ：نج⿱⿱㇒⿲丶丶㇒木：
$\mathrm{V}_{\mathrm{n}}=4+8\left(\frac{1}{12}\right)^{n}-11\left(\frac{1}{12}\right)^{n}: \mathrm{V}_{\mathrm{n}}=\mathrm{U}_{\mathrm{n}}-11\left(\frac{1}{12}\right)^{n}: 01$

$$
\mathrm{V}_{\mathrm{n}}=4-3\left(\frac{1}{12}\right)^{n}: \text { wall }
$$

$\lim _{n \rightarrow+\infty} \mathrm{U}_{\mathrm{n}}=\lim _{n \rightarrow+\infty} 4+8\left(\frac{1}{12}\right)^{n}=4 . \lim _{n \rightarrow+\infty} \mathrm{V}_{\mathrm{n}}=\lim _{n \rightarrow+\infty} 4-3\left(\frac{1}{12}\right)^{n}=4$

$$
\begin{aligned}
& 3 \mathrm{U}_{\mathrm{n}}+8 \mathrm{~V}_{\mathrm{n}}=3 \mathrm{U}_{0}+8 \mathrm{~V}_{0} \text { : ثابتّة ومنه } X_{n}=X_{0} \text { لابنا } \\
& \mathrm{U}_{\mathrm{n}}-\mathrm{V}_{\mathrm{n}}=\mathrm{W}_{\mathrm{n}} \text { : } \quad 3 \mathrm{U}_{\mathrm{n}}+8 \mathrm{~V}_{\mathrm{n}}=44 \quad \text { : ألدينا } \\
& \mathrm{U}_{\mathrm{n}}-\mathrm{V}_{\mathrm{n}}=11\left(\frac{1}{12}\right)^{n}: \mathbf{U}_{\mathrm{n}}-\mathrm{V}_{\mathrm{n}}=\mathbf{W}_{\mathrm{n}} \times \mathrm{q}^{\mathrm{n}}: \text { : } \text {, }
\end{aligned}
$$

$$
U_{2}=\frac{U_{1}+2 V_{1}}{3}=\frac{\frac{14}{3}+\frac{21}{2}}{3}=\frac{91}{18} \quad V_{2}=\frac{U_{1}+3 V_{1}}{4}=\frac{\frac{14}{3}+\frac{63}{4}}{4}=\frac{254}{48}
$$

$$
W_{n}=U_{n}-V_{n}
$$

$$
\text { 2) نبرهن أن (W }) \text { متتالية هندسية : }
$$

$$
\begin{aligned}
W_{n+1}= & U_{n+1}-V_{n+1}=\frac{U_{n}+2 V_{n}}{3}-\frac{U_{n}+3 V_{n}}{4} \\
& =\frac{4 U_{n}+8 V_{n}-3 U_{n}-9 V_{n}}{12}
\end{aligned}
$$

$$
W_{n+1}=\frac{1}{12}\left(U_{n}-V_{n}\right)=\frac{1}{12} \cdot W_{n}
$$

$$
\text { q= } \left.\frac{1}{12} \text { ومنه }\right) \text { متتالية هنسسية أساسسها }
$$

3) تبيان أن (

نبرهن أن
$U_{n+1}-U_{n}=\frac{U_{n}+2 V_{n}}{3}-U_{n}=\frac{-2\left(U_{n}-V_{n}\right)}{3}$
$V_{n+1}-V_{n}=\frac{U_{n}+3 V_{n}}{4}-V_{n}=\frac{U_{n}-V_{n}}{4}$

$$
\text { نلاحظ أن إثشارة } \mathbf{U}_{n+1}-\mathbf{V}_{n} \text { عكس إشارة }
$$

 $\lim _{x \rightarrow+\infty}\left(U_{n}-V_{n}\right)=0 \quad$ ：$\quad \lim _{x \rightarrow+\infty} W_{n}=0 \quad$ ولدينا إن ：

$$
\begin{aligned}
X_{n+1}-X_{n} & =3 U_{n+1}+8 V_{n+1}-3 U_{n}-8 V_{n} \quad: ~ \\
& =U_{n}+2 V_{n}+2 U_{n}+6 V_{n}-3 U_{n}-8 V_{n}=0
\end{aligned}
$$

盾 هي القيمة التّي يجب إعطاوها للعدد α حتى يكون D_{2} متساويان．

A تمثّليا البياني فإن

$$
\text { x=a } x=0 \text { و } x=0 \text { و } x=\mathrm{c} \text { و } \mathrm{x} \text { و بالُعبارة : }
$$

$$
A=\int_{a}^{b}-f(x) d x \quad \text { gi } \quad A=-\int_{a}^{b} f(x) d x
$$

$$
\int_{a}^{b}-f(x) d x=-\int_{a}^{b} f(x) d x=\text { it }
$$

： 2 ： 2 بر
｜

$$
\frac{-1}{b-a} \int_{a}^{b}-f(x) d x=\int_{a}^{b} \frac{1}{b-a} f(x) d x
$$

： 3 號

 （C）

有

$$
\int_{\mathrm{a}}^{\mathrm{b}} f(x) \mathrm{d} x=\mathrm{F}(\mathrm{~b})-\mathbf{F}(\mathrm{a}): \dot{\mathrm{j}} \mathrm{~J} \mathrm{~F}(\mathrm{~b})-\mathrm{F}(i)
$$

$$
\int_{\mathrm{a}}^{\mathrm{b}} f(x) \mathrm{d} x=[\mathbf{F}(x)]_{a}^{b}=\mathbf{F}(\mathbf{b})-\mathbf{F}(\mathbf{a})
$$

\square

1ـ الحساب التكاملي و المساحات ：
تعريف:
 $f(x)=x+1$ ：مثال $S=\frac{1 \times 1}{2}:$ مساحة المثلث OAB هي إذن ：$S=\frac{1}{2}$

$$
\int_{-1}^{0} f(x) d x=\frac{1}{2}: \text { وعلي }
$$ مبرهنة 1 ： $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ تعريف 2 ： f دالثة مستمرة و موجبة على مجال［a；b］．نسمي القيمة المتوسطة للدالةّ على المجال

$$
\begin{aligned}
& \text { : العدد الحقيقي }[a ; b] \\
& \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x
\end{aligned}
$$

$$
\begin{aligned}
& \text { ليكن D } \\
& \text { الملونتين في الشكل }
\end{aligned}
$$

. $\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x:$:العد الحقيقي $[\mathrm{a} ; \mathrm{b}]$. المكاملة بالتجزنة : بر برهن 11 :
 بن اججل كل غددان a وb من ا فأبن :

$$
\int_{a}^{b} f^{\prime}(x) \cdot g(x) \mathrm{d} x=[f(x) \cdot g(x)]_{\mathrm{a}}^{\mathrm{b}}-\int_{\mathrm{a}}^{\mathrm{b}} g^{\prime}(x) f(x) \mathrm{d} x
$$

5- الـالة الأصلية التي تتُعم عتد a a

: 12 涪

$$
g(x)=\int_{a}^{x} f(t) d t \text { : }
$$

اله حساب بعض الحجوم :

$$
x=\mathrm{b}, x=\mathrm{a}, y=0
$$

$$
\mathbf{V}=\int_{\mathrm{a}}^{b} \pi[f(\mathrm{x})]^{2} d x
$$

$\int_{a}^{b} f(x) \mathrm{d} x=-\int_{b}^{a} f(x) \mathrm{d} x=\int_{b}^{a}-f(x) \mathrm{d} x:$ رينا بر هنة 5 :
I دو g gf a

$$
\int_{a}^{b}[\alpha f(x)+\beta g(x)] d x=\alpha \int_{a}^{b} f(x) d x+\beta \int_{a}^{b} g(x) d x
$$

 $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$:

$$
\int_{-a}^{a} f(x) \mathrm{d} x=0 \text { : }
$$

$$
\int_{a}^{\mathrm{a}+\mathrm{T}} f(x) \mathrm{d} x=\int_{0}^{\mathrm{T}} f(x) \mathrm{d} x: \text { a أجل كل عدد حقيقي }
$$

$$
\int_{a}^{b} f(x) \mathrm{d} x \leq \int_{a}^{b} g(x) \mathrm{d} x
$$

 $m(\mathrm{~b}-\mathrm{a}) \leq \int_{\mathrm{b}}^{\mathrm{b}} f(x) \mathrm{d} x \leq \mathrm{M}(\mathrm{b}-\mathrm{a}):$:ذاكان $m \leq f(x) \leq \mathrm{t}$: m, $0 \leq\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leq M|b-a|$:
$\square \int_{1}^{2}[2 f(x)-3 g(x)] d x=2 \int_{1}^{2} f(x) d x-3 \int_{1}^{2} g(x) d x$

$$
\int_{0}^{1}\left(x^{2}+1\right) d x \leq \int_{0}^{1} x^{2} d x
$$

$$
\int_{1}^{2} x^{2} d x \leq 0
$$

$$
\int_{1}^{2}\left(x^{2}-1\right) d x=\int_{2}^{1}\left(1-x^{2}\right) d x
$$

$$
\int_{0}^{1} d t=x
$$

ثبش التكاملات الآتية :

1) $\int_{0}^{1}\left(x^{2}-4 x+5\right) d x$
2) $\int_{1}^{2}\left(\frac{1}{x^{2}}-\frac{1}{x}\right) d x$
3) $\int_{0}^{1} x\left(x^{2}-4\right)^{3} d x$
4) $\int_{-1}^{1} \frac{x^{2}}{\left(x^{3}+3\right)^{2}} d x$
5) $\int_{2}^{2} e^{x} d x$
6) $\int_{0}^{1}\left(e^{2 x}-e^{x}+4\right) d x$
7) $\int_{0}^{1} \frac{e^{x}}{\left(e^{x}+1\right)^{2}} d x$
8) $\int_{0}^{\frac{\pi}{2}} \sin x \cos x d x$
9) $\int_{0}^{\pi} \cos 3 x d x$
10) $\int_{0}^{\frac{\pi}{3}} \tan x d x$
11) $\int_{0}^{1} \frac{1}{\sqrt{x+1}} d x$
12) $\int_{e}^{2 \mathrm{e}} \frac{\ln x}{x} \mathrm{~d} x$

ن \longrightarrow (

أذكر صحة أم خطأ مايلي باستعمال الرمز ل للصحة و و الرمز

1) مساحة الحيزز المستوي المحدد بمنحنى دالة هجال [a; b] \quad [المستقيمات التي معادلاتها :
$\int_{a}^{b} f(x) d x: \quad x=b$ ت \quad : $x=$ a $\quad y=0$
2 القيمة المتوسسطة للدالة : $\frac{1}{3} \int_{3}^{b} x^{2} d x=63:$ هي
2) مساحة الحيز المستتوي المحدد بالمستقيمات النتي دعادلاتها :

$$
\int_{-1}^{1} \frac{1}{x^{2}} d x=\left[\frac{-1}{x}\right]_{-1}^{1}=-2
$$

$$
\int_{0}^{x} \cos t d t=\sin x
$$

$$
\int_{0}^{1} f(x) \mathrm{d} x \leq 1: \text { : } 7
$$

$$
\int_{0}^{2 \pi} \sin x d x=\int_{\pi}^{3 \pi} \sin x d x
$$

$$
\int_{-2}^{2} x^{2} d x=2 \int_{0}^{2} x^{2} d x
$$

$$
\int_{-1}^{1}\left(x^{3}+x\right) d x \neq 0
$$

2- عين حصر اللاالة f على المجال [2; 0 0].

التّرين 7 :

$$
f(x)=\cos x \text { بالعباد }
$$

الث القيمة المتوسطة للدالة f على هـا المجالـ .

$$
\cdot \int_{e}^{2 e} \frac{x}{\ln x} d x \text { سصتانت حصر اللتكامل }
$$

(4) باسبتعمال قانون المكاملة بالتجزئة التكاملات الآتية

1) $\int_{\frac{\pi}{2}}^{\pi} x \sin x d x$
2) $\int_{0}^{\pi} x \cos 3 x d x$
3) $\int_{0}^{\ln 2} x \mathrm{e}^{x} \mathrm{~d} x$
4) $\int_{1}^{2} \frac{\ln x}{x^{2}} d x$
5) $\int_{0}^{\frac{\pi}{4}} \frac{x}{\cos ^{2} x} d x$
6) $\int_{0}^{1}(x+1) \mathrm{e}^{-x} d x$

بار برتين بقانون التجزئة التكامالات الآتية.
7) $\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x$
8) $\int_{0}^{x} t^{2} \sin 2 t d t$
9) $\int_{1}^{2}(\ln x)^{2} d x$
10) $\int_{0}^{\pi} \sin x e^{x} d x$
$x \mapsto \sqrt{9-x^{2}} f f$ لدالد
 || (C) و محور الفو اصل
(y^{2} (
 $f(x)=\mathrm{a} x+\mathrm{b}+\frac{\mathrm{c}}{/ x-1}+\frac{\mathrm{d}}{x+2}$:1- بين أنه يمكن كتابة $f(x)$ على الشكّل

حيث a و b و c و

التمرين 4 :

$$
\int_{-2}^{2} f(x) d x: 2
$$

$$
\int_{-2}^{2} f(x) d x=2 \int_{0}^{2} f(x) d x \text { : بين ان }
$$

4- احسب مساحة الحيز المستوى المحدد بالمنحنى (${ }^{\text {الما }}$) و المستققيمات التّي

$$
\text { (الوحدة } y=0, x=2, x=0 \text { (}{ }^{\text {(}} \text { : معادلالها }
$$

$$
f(x)=\frac{1}{1+x^{2}}: \text { : } f
$$

1- عين خصرا اللالةةf على الثجال [2 ; 0] .

$$
\int_{0}^{2} \frac{1}{1+x^{2}} d x \text { : الستنتج حصرا اللتكامل }
$$

$$
\begin{aligned}
& f(x)=\frac{\alpha}{5-x}+\frac{\beta}{5+x}: \text { عين العددان }
\end{aligned}
$$

$f(x)=\mathrm{e}^{x^{2}+1}$: f
7) استنتّج مما سبق قيمـة مقربة إلى 0,01 للعدد II I

التمرين 15 :

$$
f(x)=\cos x \quad \text { نعتبر الدالةة } f \text { (لممرفةة بالعبارة }
$$

 المحصور بين (C) و محور الفو اصل في معلم متعامد و متجانس $(O ; \vec{i}, \vec{j}) ح ي$ (C)

وحدة هي Cm.
2) احسب حجم الحيز الذي نحصل عليه بدوران (D) حول محور الفو اصل. .

التمرين 16 :
$f(x)=\sqrt{1-x^{2}}$ انشئ التمثيل البياني اللـالة f الثّ
(D) مساحة الحيز المستوى المحدد بالمنحنى $)$ (D) و محور الفو اصل. احسب حجم الجسم المحصضل عليه بدوران (D) حول محور الفو اصل .

$$
\begin{aligned}
& f(x)=\frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}+1} \cdot: \text { : بين أن } \\
& \text { 2- الدس تغيرات الدالةة }
\end{aligned}
$$

(3 - احسب A مساحة الميز المستوى المحدد بالمنحنى $)$ و المستقيمات التّي

$$
\text { . } y=1 \text { و } x=1 \text { g } x=0: \text { : } x=1 \text { لمادها }
$$

$$
n \in \mathbb{N}^{*}: \text { حيث } I_{n}=\frac{1}{n!} \int_{0}^{1}(1-x)^{n} e^{x} d x: \text { : }
$$ (أنه هن أجل كل عدد حقيقي x هن

$$
0 \leq(1-x)^{n} e^{x} \leq e
$$

2- احسبب مساحة الحيز المستوى المحدد بالمنحنى (${ }^{\text {المی }}$ (الممثل لتغيرات f في هعلم متعاهد و متجانس $\left(\mathrm{cm}^{2}\right.$ (الوحدة) . $[\operatorname{Ln} 3 ; \operatorname{Ln} 4]$

$$
\text { التمبر التكن التمامل الآتي : } 13 \text { التم }
$$

$$
f(x)=\frac{\mathrm{e}^{-x}}{1-x} \quad: 14 \text { التمرين } 14 \text { الدرس تغيرات الدالة } 1 \text { الهيث }
$$

$$
\text { [0; } \left.\frac{1}{2}\right] \text { ثم بين أنهه من أجل كل عدد حقيقي xن المجال }
$$

$$
.1 \leq f(x) \leq \frac{2}{\sqrt{\mathrm{e}}}: \text { فإن }
$$

(2

$$
x \in\left[0 ; \frac{1}{2}\right] \text { بين أن : } 1
$$

$$
I=\int_{0}^{\frac{1}{2}}(1+x) \mathrm{e}^{-x} d x+\int_{0}^{\frac{1}{2}} x^{2} f(x) d x:(4
$$

$$
\int_{0}^{\frac{1}{2}}(1+x) e^{-x} d x \quad \text { : احسب }(5
$$

$$
\frac{1}{24} \leq \int_{0}^{\frac{1}{2}} x^{2} f(x) d x \leq \frac{1}{12 \sqrt{e}}: \text { (1) استنتج من (1) }
$$

$$
\begin{aligned}
& \text { - } f(x) \text { الدرس إششارة }
\end{aligned}
$$

$$
\begin{aligned}
\int_{112}^{2}\left(\frac{1}{x^{2}}-\frac{1}{x}\right) d x & =\left[\frac{-1}{x}-\ln x\right]_{1}^{2} \\
& =\left[\frac{-1}{2}-\ln 2\right]-\left[\frac{-1}{1}-\ln 1\right] \\
& =\frac{-1}{2}-\ln 2+1=\frac{1}{2}-\ln 2
\end{aligned}
$$

$\int_{0}^{1} x\left(x^{2}-4\right)^{3} \mathrm{~d} x=\frac{1}{2} \times \int_{0}^{1} 2 x\left(x^{2}-4\right)^{3} \mathrm{~d} x$

$$
\begin{aligned}
= & \frac{1}{2}\left[\frac{\left(x^{2}-4\right)^{4}}{4}\right]_{0}^{1}=\frac{1}{2}\left[\frac{(1-4)^{4}}{4}-\frac{(0-4)^{4}}{4}\right] \\
& =\frac{1}{2}\left[\frac{81}{4}-\frac{256}{4}\right]=\frac{-175}{8}
\end{aligned}
$$

$$
\int_{-1}^{1} \frac{x^{2}}{\left(x^{3}+3\right)^{2}} \mathrm{~d} x=\frac{1}{3} \times \int_{-1}^{1} \frac{3 x^{2}}{\left(x^{3}+3\right)^{2}} \mathrm{~d} x
$$

$$
=\frac{1}{3}\left[\frac{-1}{x^{3}+3}\right]_{-1}^{1}=\frac{1}{3}\left[\left(\frac{-1}{4}\right)-\left(\frac{-1}{2}\right)\right]
$$

$$
=\frac{1}{3}\left(\frac{1}{4}\right)=\frac{1}{12}
$$

$$
\int_{-2}^{2} \mathrm{e}^{x} d x=\left[\mathrm{e}^{x}\right]_{-2}^{2}=\mathrm{e}^{2}-\mathrm{e}^{-2}
$$

$$
\int_{0}^{1}\left(\mathrm{e}^{2 x}-\mathrm{e}^{x}+4\right) \mathrm{d} x=\left[\frac{1}{2} \mathrm{e}^{2 x}-\mathrm{e}^{x}+4 x\right]_{0}^{1}
$$

$$
=\left(\frac{1}{2} e^{2}-\mathrm{e}+4\right)-\left(\frac{1}{2} \mathrm{e}^{0}-\mathrm{e}^{0}+4(0)\right)
$$

$$
=\frac{1}{2} e^{2}-e+4+\frac{1}{2}
$$

$$
=\frac{1}{2} e^{2}-e+\frac{9}{2}
$$

. $\lim _{n \rightarrow+\infty} I_{n}=0$: $0 \leq I_{n} \leq \frac{e}{n!} \quad$:

3) باستُعمال المكاملة بالتجزنـة أحسب

$$
I_{n}=-\frac{1}{n!}+I_{n-1}: n \geq 2 \text { بين أنه من أجل }
$$

$$
I_{n}=-\left(\frac{1}{n!}+\frac{1}{(n-1)!}+\ldots+\frac{1}{2!}\right)+I_{1} \quad \text { برهن بالثتراجع أن }
$$

$$
I_{n}=-\left(\frac{1}{n!}+\frac{1}{(n-1)!}+\ldots+\frac{1}{2!}+\frac{1}{1!}+1\right)+e \text { : }
$$

$$
\lim _{n \rightarrow+\infty}\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}\right)=e \quad \text { بين أن }
$$

Jo 1

$\sqrt{ }$	(4)	. $\sqrt{ }$	(3	. V	(2		(1
- V	(8)	. $\sqrt{ }$	(7	. V	(6)	. 1	(5
. \times	(12	. V	(11	. \times	(10		(9
		. \times	(15	\checkmark	(14	.	(13

$$
\begin{aligned}
& \quad \int_{0}^{1}\left(x^{2}-4 x+5\right) d x=\left[\frac{x^{3}}{3}-2 x^{2}+5 x\right]_{0}^{1} \\
& =\left(\frac{(1)^{3}}{3}-2(1)^{2}+5(1)\right)-\left(\frac{0^{3}}{3}-2(0)^{2}+5 \times 0\right) \\
& =\frac{1}{3}-2+5=\frac{1-6+15}{3}=\frac{10}{3}
\end{aligned}
$$

$$
=-\left[\ln \left(\frac{1}{2}\right)-\ln (1)\right]=-\ln \left(\frac{1}{2}\right)=\ln 2
$$

$$
\int_{0}^{1} \frac{1}{\sqrt{x+1}} d x=[2 \sqrt{x+1}]_{0}^{1}=2 \sqrt{2}-2
$$

$$
\begin{aligned}
\int_{\mathrm{e}}^{2 \mathrm{e}} \frac{\ln x}{x} \mathrm{~d} x & =\int_{\mathrm{e}}^{2 \mathrm{e}} \frac{1}{x} \times(\ln x)^{1} \mathrm{~d} x \\
& =\left[\frac{(\ln x)^{2}}{2}\right]_{e}^{2 e}=\frac{(\ln 2 \mathrm{e})^{2}}{2}-\frac{(\ln \mathrm{e})^{2}}{2} \\
& =\frac{(\ln 2 \mathrm{e})^{2}}{2}-\frac{1}{2}
\end{aligned}
$$

$$
\begin{align*}
& \int_{0}^{\frac{\pi}{2}}\left(\cos ^{2} x-\sin ^{2} x\right) d x=\int_{0}^{\frac{\pi}{2}} \cos 2 x d x \\
&=\left[\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{2}}=\frac{1}{2} \sin \pi-\frac{1}{2} \sin 0=0
\end{align*}
$$

التُمرين 3 :

$$
f(x)=a x+b+\frac{c}{x-1}+\frac{d}{x+2} \quad \text { عثتابة } f(x) \text { على الشكل } f(x)
$$

$$
f(x)=\frac{(a x+b)(x-1)(x+2)+c(x+2)+d(x-1)}{(x-1)(x+2)}
$$

$$
f(x)=\frac{(a x+b)\left(x^{2}+x-2\right)+c x+2 c+d x-d}{x^{2}+x-2}
$$

$$
f(x)=\frac{a x^{3}+a x^{2}-2 a x+b x^{2}+b x-2 b+c x+2 c+d x-d}{x^{2}+x-2}
$$

$$
f(x)=\frac{a x^{3}+(a+b) x^{2}+(-2 a+b+c+d) x-2 b+2 c-d}{x^{2}+x-2}
$$

$$
\begin{align*}
& \begin{aligned}
\int_{1}^{2}\left(e^{-x}-\frac{1}{x^{2}}\right) \mathrm{d} x & =\left[-e^{-x}+\frac{1}{x}\right]_{1}^{2} \\
= & \left(-e^{-2}+\frac{1}{2}\right)-\left(-\mathrm{e}^{-1}+1\right) \\
& =-\frac{1}{\mathrm{e}^{2}}+\frac{1}{2}+\frac{1}{\mathrm{e}}-1 \\
= & -\frac{1}{\mathrm{e}^{2}}+\frac{1}{\mathrm{e}}-\frac{1}{2}
\end{aligned} \\
& \begin{aligned}
\int_{0}^{1}\left(\frac{\mathrm{e}^{x}}{\left(e^{x}+1\right)^{2}}\right) \mathrm{d} x & =\left[\frac{-1}{e^{x}+1}\right]_{0}^{1} \\
& =-\frac{1}{\mathrm{e}+1}-\frac{-1}{2}=\frac{-1}{\mathrm{e}+1}+\frac{1}{2}
\end{aligned}
\end{align*}
$$

$$
\int_{0}^{\frac{\pi}{2}} \sin x \cos x d x=\int_{0}^{\frac{\pi}{2}} \cos x \cdot(\sin x)^{1} d x
$$

$$
=\left[\frac{\sin ^{2} x}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{\sin ^{2} \frac{\pi}{2}}{2}-\frac{\sin ^{2} 0}{2}=\frac{1}{2}
$$

$$
\int_{0}^{\pi} \cos 3 x d x=\left[\frac{1}{3} \sin 3 x\right]_{0}^{\pi}
$$

$$
=\frac{1}{3} \sin 3 \pi-\frac{1}{3} \sin 0=0
$$

$$
\int_{0}^{\frac{\pi}{3}} \tan x d x=\int_{0}^{\frac{\pi}{3}} \frac{\sin x}{\cos x} d x=-\int_{0}^{\frac{\pi}{3}} \frac{-\sin x}{\cos x} d x
$$

$$
=-[\ln (\cos x)]_{0}^{\frac{\pi}{3}}
$$

$$
=-\left[\ln \left(\cos \frac{\pi}{3}\right)-\ln (\cos 0)\right]
$$

$$
: \int_{-2}^{2} f(x) d x \text { حساب }
$$

$\int_{-2}^{2} f(x) d x=\frac{-5}{2} \int_{-2}^{2} \frac{-1}{5-x} d x+\frac{5}{2} \int_{-2}^{2} \frac{1}{5+x} d x$

$$
\begin{aligned}
& =\left[\frac{-5}{2} \ln (5-x)+\frac{5}{2} \ln (5+x)\right]_{-2}^{2} \\
& =\frac{5}{2}[\ln (5+x)-\ln (5-x)]_{-2}^{2}=\frac{5}{2}\left[\ln \left(\frac{5+x}{5-x}\right)\right]_{-2}^{2} \\
& \left.=\frac{5}{2} \cdot \ln \frac{7}{3}-\ln \frac{3}{7}\right]=\frac{5}{2} \ln \left(\frac{49}{9}\right)
\end{aligned}
$$

$$
\int_{-2}^{2} f(x) d x=2 \int_{0}^{2} f(x) d x: \text { تبيان أن : }
$$

$\int_{0}^{2} f(x) d x=\frac{5}{2}\left[\ln \left(\frac{5+x}{5-x}\right)\right]_{0}^{2}=\frac{5}{2}\left[\ln \frac{7}{3}-\ln 1\right]$
$\int_{0}^{2} f(x) d x=\frac{5}{2} \ln \frac{7}{3}$
$2 \int_{0}^{2} f(x) d x=2 \times \frac{5}{2} \ln \frac{7}{3}=\frac{5}{2} \ln \left(\frac{7}{3}\right)^{2}$
$2 \int_{0}^{2} f(x) d x=\frac{5}{2} \ln \left(\frac{49}{9}\right)$

$$
\int_{-2}^{2} f(x) d x=2 \int_{0}^{2} f(x) d x
$$

\boldsymbol{x}	$-\infty$	-5	5	$+\infty$	
$25-x^{2}$	-	0	+	0	-

- $\left\{\begin{array}{l}a=2 \\ b=1 \\ c=3 \\ d=-1\end{array}:\left\{\begin{array}{l}a=2 \\ b=1 \\ c+d=2 \\ 2 c-d=7\end{array}:\left\{\begin{array}{l}a=2 \\ a+b=3 \\ -2 a+b+c+d=-1 \\ -2 b+2 c-d=5\end{array} \quad: \begin{array}{l}\text { g } \\ 2\end{array}\right.\right.\right.$

$$
f(x)=2 x+1+\frac{3}{x-1}-\frac{1}{x+2} \text { ! } 1
$$

2- تُعيين الدالة الأصلية للدالة f :

$$
g(x)=x^{2}+x+3 \ln |x-1|-\ln |x+2|+c ; c \in \mathbb{R}
$$

$$
\int_{\frac{-1}{2}}^{\frac{1}{2}} f(x) d x \text { : حساب }
$$

$$
\int_{\frac{-1}{2}}^{2} f(x) \mathrm{d} x=\left[x^{2}+x+3 \ln |x-1|-\ln |x+2|\right]_{\frac{-1}{2}}^{\frac{1}{2}}
$$

$$
\begin{aligned}
& =\left(\frac{1}{4}+\frac{1}{2}+3 \ln \frac{1}{2}-\ln \frac{5}{2}\right)-\left(\frac{1}{4}-\frac{1}{2}+3 \ln \frac{3}{2}-\ln \frac{3}{2}\right) \\
& =\frac{3}{4}+3 \ln \frac{1}{2}-\ln \frac{5}{2}+\frac{1}{4}-3 \ln \frac{3}{2}+\ln \frac{3}{2} \\
& =1-3 \ln 2-\ln 5+\ln 2-3 \ln 3+3 \ln 2+\ln 3-\ln 2 \\
& =1-\ln 5-2 \ln 3
\end{aligned}
$$

$$
f(x)=\frac{\alpha}{5-x}+\frac{\beta}{5+x} \quad \text { 1- تيين }
$$

$$
f(x)=\frac{\alpha(5+x)+\beta(5-x)}{(5-x)(5+x)}=\frac{(\alpha-\beta) x+5 \alpha+5 \beta}{25-x^{2}}
$$

$$
\left\{\begin{array}{l}
\alpha=2,5 \\
\beta=2,5
\end{array}:\left\{\begin{array}{l}
\alpha=\beta \\
10 \alpha=25
\end{array}:\left\{\begin{array}{l}
\alpha-\beta=0 \\
5 \alpha+5 \beta=25
\end{array}:\right. \text { ومنه }\right.\right.
$$

حصر التكامل : $\int_{-2}^{2} f(x) d x$ بما أن زوجية فإن : $2 e \leq \int_{0}^{2} f(x) d x \leq 2 e^{5}, \quad \int_{-2}^{2} f(x) d x=2 \int_{0}^{2} f(x) d x$

$$
\begin{array}{r}
4 e \leq 2 \int_{0}^{2} f(x) d x \leq 4 \mathrm{e}^{5}: \text { : } \mathrm{e} \\
4 \mathrm{e} \leq \int_{-2}^{2} f(x) \mathrm{d} x \leq 4 \mathrm{e}^{5}: \text { نذ! }
\end{array}
$$

القيمة المتوسطة 7للد الة f : $\frac{1}{\frac{\pi}{2}-2} \int_{0}^{\frac{\pi}{2}} f(x) \mathrm{d} x=\frac{1}{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \cos x \mathrm{~d} x$

$$
\begin{aligned}
& =\frac{2}{\pi}[\sin x]_{0}^{\frac{\pi}{2}}=\frac{2}{\pi}\left[\sin \frac{\pi}{2}-\sin 0\right] \\
& =\frac{2}{\pi}(1-0)=\frac{2}{\pi}
\end{aligned}
$$

$\frac{2}{\pi}$ هُ
: مر اسة تغيرات f على [e; 2e

$$
f(2 e)=\frac{2 \mathrm{e}}{\ln 2 \mathrm{e}} \quad\left\{f(e)=\frac{\mathrm{e}}{\ln \mathrm{e}}=\frac{\mathrm{e}}{1}=\mathrm{e}\right.
$$

$f^{\prime}(x)=\frac{1 \cdot \ln x-\frac{1}{x} \cdot x}{(\ln x)^{2}}=\frac{\ln x-1}{(\ln x)^{2}}$

$$
x=\mathrm{e} \text { ومنه } \ln x=1 \text { : مناه } f^{\prime}(x)=0
$$

$$
x>\mathrm{e} \text { مونـ } \ln x>1 \text { : } f^{\prime}(x)>0
$$

[e;2e] $]$ [$f:$ है।
 $A=\int_{0}^{2} f(x) d x=\frac{5}{2} \ln \frac{7}{3} \mathrm{~cm}^{2} \quad$ ومنه المساحة A هي التمرين 5 :
1 $1 \leq 1+x^{2} \leq 5: 0 \leq x^{2} \leq 4$:لدينا 0 وعليه $\frac{1}{5} \leq f(x) \leq 1$: $\frac{1}{5} \leq \frac{1}{1+x^{2}} \leq 1$: 1 : $\frac{1}{5} \leq f(x) \leq 1$: 1 : لدينا $\int_{0}^{2} \frac{1}{1+x^{2}} d x$: ومنه : $\frac{2}{5} \leq \int_{0}^{2} \frac{1}{1+\mathrm{x}^{2}} d x \leq 2 \quad$ وبالتالمي $\quad \frac{2}{5} \leq \int_{0}^{2} f(x) \mathrm{d} x \leq 2$ $D_{f}=\mathbb{R}:$ تبيان أن f زوجية $f(-x)=\mathrm{e}^{(-x)^{2}+1} \quad,-x \in \mathbb{R}: \mathbb{R}$ من أجل كل عنصر أي $f(-x)=f(x)$ 2 $0 \leq x^{2} \leq 4$ لدينا: $0 \leq x \leq 2$ $e \leq \mathrm{e}^{x^{2}+1} \leq \mathrm{e}^{5}$ وعليه: $1 \leq x^{2}+1 \leq 0$ أن $1 \leq$ أن e $\leq f(x) \leq \mathrm{e}^{5} \quad$ وبالثتالي $\int_{0}^{2} f(x) d x$: $\mathrm{e} \leq f(x) \leq \mathrm{e}^{5}$ لاينا $\mathrm{e}(2-0) \leq \int_{0}^{2} f(x) \mathrm{d} x \leq \mathrm{e}^{5}(2-0):$ ومنه $2 \mathrm{e} \leq \int^{2} f(x) \mathrm{d} x \leq 2 \mathrm{e}^{5}$
$\int_{\frac{\pi}{2}}^{\pi} x \sin x d x=\pi-1:$ g ومنه $\int_{0}^{\frac{\pi}{2}} x \cos 3 x d x$ حساب

$$
\begin{aligned}
& \int_{a}^{b} f^{\prime}(x) \mathrm{g}(x) \mathrm{d} x=[f(x) \mathrm{g}(x)]_{a}^{b}-\int_{a}^{\mathrm{b}} g^{\prime}(x) f(x) \mathrm{d} x: \text { لدينا } \\
& g(x)=x \text {, } f^{\prime}(x)=\cos 3 x: \text { بوضع } \\
& g^{\prime}(x)=1 \text {, } f(x)=\frac{1}{3} \sin 3 x: \text { ند }
\end{aligned}
$$

$\int_{0}^{\pi} x \cos 3 x \mathrm{~d} x=\left[\frac{1}{3} x \sin 3 x\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{1}{3} \sin 3 x \mathrm{~d} x \quad: \quad$ g

$$
\begin{aligned}
& =\left[\frac{1}{3} x \sin 3 x\right]_{0}^{\pi}+\left[\frac{1}{9} \cos 3 x\right]_{0}^{\pi} \\
& =\left[\frac{1}{3} x \sin 3 x+\frac{1}{9} \cos 3 x\right]_{0}^{\pi} \\
& =\left(\frac{1}{3} \pi \sin 3 \pi+\frac{1}{9} \cos 3 \pi\right)-\left(\frac{1}{3} \times 0 \times \sin 0+\frac{1}{9} \cos 0\right) \\
& \quad=-\frac{1}{9}-\frac{1}{9}=-\frac{2}{9}
\end{aligned}
$$

$\int_{0}^{\pi} x \cos 3 x d x=-\frac{2}{9}$

$$
\int_{0}^{\ln 2} x \mathrm{e}^{x} \mathrm{~d} x
$$

$$
\int_{a}^{b} f^{\prime}(x) g(x) \mathrm{d} x=[f(x) \cdot g(x)]_{a}^{b}-\int_{a}^{b} g^{\prime}(x) f(x) \mathrm{d} x
$$

$$
g(x)=x \quad, \quad f^{\prime}(x)=\mathrm{e}^{x}
$$

x	e^{e}	2e	
$f^{\prime}(x)$	0	+	
$f(x)$		$\frac{2 e}{\ln 2 e}$	

$$
\begin{aligned}
& \text { استنتاج حصر اللتكامل : } \\
& \mathrm{e} \leq f(x) \leq \frac{2 \mathrm{e}}{\ln 2 \mathrm{e}} \text { لدينا } \\
& \mathrm{e}(2 \mathrm{e}-\mathrm{e}) \leq \int_{e}^{2 e} f(x) \mathrm{d} x \leq \frac{2 \mathrm{e}}{\ln 2 \mathrm{e}}(2 \mathrm{e}-\mathrm{e}): \quad: \mathrm{g} \\
& \mathrm{e}^{2} \leq \int_{e}^{2 e} f(x) \mathrm{d} x \leq \frac{2 \mathrm{e}^{2}}{\ln 2 \mathrm{e}}: \text { وعلئ }
\end{aligned}
$$

$$
\int_{\frac{\pi}{2}}^{\pi} x \sin x d x \text { (1) حساب : }
$$

$\int_{a}^{b} f^{\prime}(x) \times g(x) \mathrm{d} x=[f(x) \times \mathrm{g}(x)]_{a}^{b}-\int_{a}^{\mathrm{b}} f(x) \times \mathrm{g}^{\prime}(x) \mathrm{d} x: \begin{aligned} & \text { لدينا }\end{aligned}$

$$
\begin{gathered}
\text { بوضع : } g(x)=x^{a}, f^{\prime}(x)=\sin x \text { وفجيه } g^{\prime}(x)=1 \quad f(x)=-\cos x
\end{gathered}
$$

$\int x \sin x \mathrm{~d} x=[-x \cos x]_{\frac{\pi}{2}}^{\pi}-\int_{\frac{\pi}{2}}^{\pi}-\cos x \mathrm{~d} x$

$$
\begin{aligned}
& =[-x \cos x]_{\frac{\pi}{2}}^{\pi}+[\sin x]_{\frac{\pi}{2}}^{\pi} \\
& \quad=[-x \cos x+\sin x]_{\frac{\pi}{2}}^{\pi} \\
& =(-\pi \cos \pi+\sin \pi)-\left(-\frac{\pi}{2} \cos \frac{\pi}{2}+\sin \frac{\pi}{2}\right) \\
& \quad=\pi+0+0-1=\pi-1
\end{aligned}
$$

$\int_{0}^{\frac{\pi}{2}} x \cos x d x:$ صساب
$\int_{0}^{\frac{\pi}{2}} x \cos x \mathrm{~d} x=[x \sin x]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \sin x \mathrm{~d} x$

$$
=[x \sin x]_{0}^{\frac{\pi}{2}}-[-\cos x]_{0}^{\frac{\pi}{2}}=[x \sin x+\cos x]_{0}^{\frac{\pi}{2}}
$$

$\int_{0}^{\frac{\pi}{2}} x \cos x \mathrm{~d} x=\left(\frac{\pi}{2} \sin \frac{\pi}{2}+\cos \frac{\pi}{2}\right)-(0+\cos 0)=\frac{\pi}{2}-1$

$$
\int_{0}^{\frac{\pi}{2}} x \sin x \mathrm{~d} x=2\left(\frac{\pi}{2}-1\right): \text { وعله }
$$

$$
\int_{0}^{x} t^{2} \sin 2 t d t \text { : حساب }
$$

$$
g(\mathrm{t})=\mathrm{t}^{2}, f^{\prime}(x)=\sin 2 \mathrm{t}: \text { : }
$$

$$
g^{\prime}(t)=2 t, f(t)=-\frac{1}{2} \cos 2 t
$$

$$
\begin{aligned}
\int_{0}^{x} \mathrm{t}^{2} \sin 2 \mathrm{tdt} & =\left[\frac{-1}{2} \mathrm{t}^{2} \cos 2 \mathrm{t}\right]_{0}^{x}-\int_{0}^{x}-\mathrm{t} \cos 2 \mathrm{tdt} \\
& =\frac{-1}{2} x^{2} \cos 2 x+\int_{0}^{x} \mathrm{t} \cos 2 \mathrm{tdt}
\end{aligned}
$$

$\int_{0}^{x} t \cos 2 t d t$:

$$
\begin{aligned}
& g(\mathrm{t})=\mathrm{t}, f^{\prime}(\mathrm{t})=\cos 2 \mathrm{t}: \text { : } \\
& g^{\prime}(t)=1 \quad, f(t)=\frac{1}{2} \sin 2 t
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=x \text {, } f^{\prime}(x)=\cos x: \text { بوضع } \\
& g^{\prime}(x)=1 \text {, } f(x)=\sin x: \text { فنجد }
\end{aligned}
$$

$$
\int_{a}^{b} f^{\prime}(x) \mathrm{g}(x) \mathrm{d} x=[f(x) \cdot \mathrm{g}(x)]_{a}^{b}-\int_{a}^{b} g^{\prime}(x) f(x) \mathrm{d} x: \text { لدينا }
$$

$$
g(x)=x+1 \quad, \quad f^{\prime}(x)=\mathrm{e}^{-x}: \text { بوضح }
$$

$$
g^{\prime}(x)=1 \quad \text { فنجد : } \quad f(x)=-\mathrm{e}^{-x}
$$

$$
\int_{0}^{1}(x+1) \mathrm{e}^{-x} \mathrm{~d} x=\left[-(x+1) \mathrm{e}^{-x}\right]_{0}^{1}-\int_{a}^{\mathrm{b}}-e^{-x} \mathrm{~d} x \quad: \quad \text { ومنه }
$$

$$
=\left[-(x+1) \mathrm{e}^{-x}\right]_{0}^{1}-\left[\mathrm{e}^{-x}\right]_{0}^{1}
$$

$$
\int_{0}^{1}(x+1) \mathrm{e}^{x} \mathrm{~d} x=\left[-(x+1) \mathrm{e}^{-x}-\mathrm{e}^{-x}\right]_{0}^{1}=\left[\mathrm{e}^{-x}(-x-1-1)\right]_{0}^{1}
$$

$$
=\left[-(x+2) \mathrm{e}^{-x}\right]_{0}^{1}=\mathrm{e}^{-1}(-3)-\mathrm{e}^{0}(-2)=\frac{-3}{\mathrm{e}}+2
$$

$\int_{a}^{b} f^{\prime}(x) \mathrm{g}(x) \mathrm{d} x=[f(x) \cdot \mathrm{g}(x)]_{a}^{b}-\int_{a}^{b} g^{\prime}(x) f(x) \mathrm{d} x \quad$:لـنا $\int_{0}^{\frac{\pi}{2}} x^{2} \sin x \mathrm{~d} x$: 1

$$
\begin{aligned}
& g(x)=x^{2} \quad, \quad f^{\prime}(x)=\sin x: \text { بوضع : فنج : }
\end{aligned}
$$

$\int_{0}^{\frac{\pi}{2}} x^{2} \sin x \mathrm{~d} x=\left[-x^{2} \cos x\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}-2 x \cos x \mathrm{~d} x \quad: \quad: \operatorname{din}$

$$
=\left[-\left(\frac{\pi}{2}\right)^{2} \cos \frac{\pi}{2}\right]-\left[-0^{2} \cos 0\right]+2 \int_{0}^{\frac{\pi}{2}} x \cos x \mathrm{~d} x
$$

$$
\int_{0}^{\frac{\pi}{2}} x^{2} \sin x \mathrm{~d} x=2 \int_{0}^{\frac{\pi}{2}} x \cos x \mathrm{~d} x \text { : }
$$

$\int_{0}^{\pi} \sin x \mathrm{e}^{x} \mathrm{~d} x=\left[\sin x \mathrm{e}^{x}\right]_{0}^{\pi}-\int_{0}^{\pi} \cos x \mathrm{e}^{x} \mathrm{~d} x$

$$
=\sin \pi \mathrm{e}^{\pi}-\sin 0 \mathrm{e}^{0}-\int_{0}^{\pi} \cos x \mathrm{e}^{x} \mathrm{~d} x=-\int_{0}^{\pi} \cos x \mathrm{e}^{x} \mathrm{~d} x
$$

$$
\int_{0}^{\pi} \cos x \mathrm{e}^{x} \mathrm{~d} x:
$$

$\int_{0}^{\pi} \cos x \mathrm{e}^{x} \mathrm{~d} x=\left[\mathrm{e}^{x} \cos x\right]_{0}^{\pi}-\int_{0}^{\pi}-\sin x \mathrm{e}^{x} \mathrm{~d} x$

$$
\begin{aligned}
& =\mathrm{e}^{\pi} \cos \pi-\mathrm{e}^{0} \cos 0+\int_{0}^{\pi} \sin x \mathrm{e}^{x} \mathrm{~d} x \\
& \int_{0}^{\pi} \cos x \mathrm{e}^{x} \mathrm{~d} x=-\mathrm{e}^{\pi}-1+\int_{0}^{\pi} \sin x \mathrm{e}^{x} \mathrm{~d} x
\end{aligned}
$$

$\int_{0}^{\pi} \sin x \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{\pi}+1-\int_{0}^{\pi} \sin x \mathrm{e}^{x} \mathrm{~d} x$
$\int_{0}^{\pi} \sin x \mathrm{e}^{x} \mathrm{~d} x+\int_{0}^{\pi} \sin x \mathrm{e}^{x} d x=\mathrm{e}^{\pi}+1$

$$
\begin{aligned}
& g(x)=\cos x \quad, \quad f^{\prime}(x)=\mathrm{e}^{x}: \text { بوض } \\
& g^{\prime}(x)=-\sin x \quad, f(x)=\mathrm{e}^{x}: \text { فنجد }
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{2}(\ln x)^{2} \mathrm{~d} x=2(\ln 2)^{2}-2(2 \ln 2-1) \\
& \text { وغظيه : } \\
& =2(\ln 2)^{2}-4 \ln 2+2 \\
& \left.=2\left[(\ln 2)^{2}-2 \ln 2+1\right)\right]=2(\ln 2-1)^{2} \\
& \int_{0}^{\pi} \sin x \mathrm{e}^{x} \mathrm{~d} x \text { : حساب } \\
& g(x)=\sin x, f^{\prime}(x)=\mathrm{e}^{x}: \text { بوض } \\
& g^{\prime}(x)=\cos x \quad, \quad f(x)=\mathrm{e}^{x}: \text { فنجد }
\end{aligned}
$$

$$
\begin{aligned}
\int_{1}^{2} \ln x d x & =[x \ln x]_{1}^{2}-\int_{1}^{2} 1 d x \\
& =[x \ln x-x]_{1}^{2}=(2 \ln 2-2)-(1 \ln 1-1) \\
& =2 \ln 2-2+1=2 \ln 2-1
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{x} t \cos 2 t d x=\left[\frac{1}{2} t \sin 2 t\right]_{0}^{x}-\int_{0}^{x} \frac{1}{2} \sin 2 t d t \\
& =\frac{1}{2} x \sin 2 x-\left[\frac{-1}{2} t \cos 2 t\right]_{0}^{x} \\
& =\frac{1}{2} x \sin 2 x-\left[\frac{-1}{4} \cos 2 x+\frac{1}{4}\right] \\
& =\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x-\frac{1}{4} \\
& \int_{0}^{x} t^{2} \sin 2 t d t=\frac{-1}{2} x^{2} \cos 2 x+\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x-\frac{1}{4}: \text { وبالتالي } \\
& \int_{1}^{2}(\ln x)^{2} d x \text { : حساب } \\
& f^{\prime}(x)=1 \quad, \quad g(x)=(\ln x)^{2}: \text { بوضع } \\
& f(x)=x \quad, g^{\prime}(x)=2 \times \frac{1}{x} \times \ln x: \text { فنجد } \\
& \int_{1}^{2}(\ln x)^{2} \mathrm{~d} x=\left[x(\ln x)^{2}\right]_{1}^{2}-\int_{1}^{2} 2 \ln x \mathrm{~d} x \\
& =2(\ln 2)^{2}-2 \int_{1}^{2} \ln x \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{A}=\frac{\pi \times \mathbf{R}^{2}}{2} & =\frac{\pi \times 9}{2}: \\
\mathbf{A} & =\frac{9 \pi}{2} \mathrm{~cm}^{2}:
\end{aligned}
$$

:

$$
e^{2 x}-7 e^{x}+12: \text { ندرس إشارة }
$$

$$
\text { بوضع } g^{2}-7 y+12: \text { نجد } e^{x}=
$$

$$
g_{2}=4 \text { و ومنه يقبل جذران : } \Delta=3=1
$$

$$
g^{2}-7 y+12=(g-3)(g-4): \text { g } و \text {, }
$$

$$
e^{2 x}-7 e^{x}+12=\left(e^{x}-3\right)\left(e^{x}-4\right)
$$

x	$+\infty$	$\ln 3$	$\ln 4$						$+\infty$
$e^{x}-3$	-	0	+		+				
$e^{x}-4$	-		-	0	+				
$\left(e^{x}-3\right)\left(e^{x}-4\right)$	+	0	-	0	+				
$f(x)$	+		-	0	+				

: A

$$
\begin{aligned}
& \mathrm{A}=-\int_{L n 3}^{L n 4} f(x) \mathrm{d} x=-\int_{L n 3}^{L n 4}\left(\mathrm{e}^{2 x}-7 \mathrm{e}^{x}+12\right) \mathrm{d} x \\
& \mathrm{~A}=-\left[\frac{1}{2} \mathrm{e}^{2 x}-7 \mathrm{e}^{x}+12 x\right]_{L n 3}^{L n 4} \\
& \mathrm{~A}=-\left(\frac{1}{2} \mathrm{e}^{2 \ln 4}-7 \mathrm{e}^{\ln 4}+12 \ln 4\right)+\left(\frac{1}{2} \mathrm{e}^{2 \ln 3}-7 \mathrm{e}^{\ln 3}+12 \ln 3\right)
\end{aligned}
$$

$2 \int_{0}^{\pi} \sin x e^{x} d x=e^{\pi}+1$
وهنه :
$\int_{0}^{\pi} \sin x \mathrm{e}^{x} \mathrm{~d} x=\frac{1}{2}\left(\mathrm{e}^{\pi}+1\right) \quad: \quad: \quad$ ومنه
التمرين 11

$$
\begin{aligned}
& D_{f}=[-3 ; 3] \text { : مجموعة التعريف * } \\
& f(3)=0 \text {; } f(-3)=0 \text { :لدينا : } \\
& f^{\prime}(x)=\frac{-x}{\sqrt{9-x^{2}}} \quad: \text { المشتّق * }
\end{aligned}
$$

x	-3	0	3
$f^{\prime}(x)$	+	0	-

| x | -3 | 0 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f^{\prime}(x)$ | + | - | |
| $f(x)$ | -0 | | |

$$
\begin{array}{cc}
y=\sqrt{9-x^{2}}: y^{2} \text { حساب }(2 \\
\left\{\begin{array}{l}
x^{2}+y^{2}=9 \\
y \geq 0
\end{array}\right. & :\left\{\begin{array}{l}
y^{2}=9-x^{2} \\
9 \\
y \geq 0
\end{array}\right.
\end{array}
$$

- $\left.\boldsymbol{D}_{f}=\right]-\infty ; \mathbb{1}[\cup] 1 ;+\infty[$
- $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{-x}}{1-x}=\lim _{x \rightarrow-\infty} \frac{\mathrm{e}^{-x}}{-x} \times \frac{-x}{1-x}=+\infty$

$$
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{\mathrm{e}^{-x}}{1-x}=+\infty
$$

$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{\mathrm{e}^{-x}}{1-x}=-\infty$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \mathrm{e}^{-x} \times \frac{1}{1-x}=0$

- $f^{\prime}(x)=\frac{-\mathrm{e}^{-x}(1-x)+\mathrm{e}^{-x}}{(1-x)^{2}}=\frac{x \mathrm{e}^{-x}}{(1-x)^{2}}$

$$
f^{\prime}(x)=\frac{x \mathrm{e}^{-x}}{(1-x)^{2}}
$$

x	$-\infty$	0	1	$+\infty$
$f^{\prime}(x)$	-		+	+

]- ; 0]

x	$-\infty$	0	1		$+\infty$
$f^{\prime}(x)$	-	0	+	+	
$f(x)$	$+\infty$		$+\infty$		

$\left\lceil 0 ; \frac{1}{2}\right]$ ف $1 \leq f(x) \leq \frac{2}{\sqrt{\mathrm{e}}}$ الجـال
$\mathrm{A}=\left(-\frac{1}{2} \mathrm{e}^{\ln 16}+7 \times 4-12 \times 2 \ln 2\right)+\left(\frac{1}{2} \mathrm{e}^{\ln 9}+7 \times 3+12 \ln 3\right)$
$A=\frac{-1}{2} \times 16+28-24 \ln 2+\frac{1}{2} \times 9+21+12 \ln 3$
$A=-8+28-24 \ln 2+\frac{9}{2}+21+12 \ln 3$
$A=41+\frac{9}{2}-24 \ln 2+12 \ln 3$
$A=\left(\frac{82+9}{2}\right)-24 \ln 2+12 \ln 3$
$\mathrm{A}=\left[\frac{91}{2}-24 \ln 2+12 \ln 3\right] \mathrm{cm}^{2}$

$\int_{-2}^{5} \frac{|x|}{1+x^{2}} d x$ حساب التكامل
$\int_{-2}^{5} \frac{|x|}{1+x^{2}} \mathrm{~d} x=\int_{-2}^{0} \frac{|x|}{1+x^{2}} \mathrm{~d} x+\int_{0}^{5} \frac{|x|}{1+x^{2}} \mathrm{~d} x$
$=\int_{-2}^{0} \frac{-x}{1+x^{2}} \mathrm{~d} x+\int_{0}^{5} \frac{x}{1+x^{2}} \mathrm{~d} x$
$=-\frac{1}{2} \int_{-2}^{0} \frac{2 x}{1+x^{2}} \mathrm{~d} x+\frac{1}{2} \int_{0}^{5} \frac{2 x}{1+x^{2}} \mathrm{~d} x$
$=-\frac{1}{2}\left[\ln \left(1+x^{2}\right)\right]_{-2}^{0}+\frac{1}{2}\left[\ln \left(1+x^{2}\right)\right]_{0}^{5}$
$=-\frac{1}{2}(\ln 1-\ln 5)+\frac{1}{2}(\ln 26-\ln 1)$
$=\frac{1}{2} \ln 5+\frac{1}{2} \ln 26$

$$
I=\int_{0}^{\frac{1}{2}}(1+x) \mathrm{e}^{-x} d x+\int_{0}^{\frac{1}{2}} x^{2} f(x) d x
$$

في المجال f متز f متزايدة تماما وعليه :

$$
\begin{aligned}
& f(0) \leq f(x) \leq f\left(\frac{1}{2}\right): \text { بما ان : } 0 \text { : } 0 \leq x \leq \frac{1}{2} \\
& 1 \leq f(x) \leq \frac{2}{\sqrt{\mathrm{e}}}: 1 \leq f(x) \leq \frac{\mathrm{e}^{\frac{-1}{2}}}{\frac{1}{2}}: \quad
\end{aligned}
$$

$$
\int_{0}^{\frac{1}{2}} \frac{e^{-x}}{1-x} d x: \text { التُفسير المندسي للتكامل }
$$

في المجال المحدد بالمنحنى (C) للادلة f و المستققيمات الثي معادلاتها :

$$
y=0, x=\frac{1}{2}, x=0
$$

$$
\frac{1}{1-x}=1+x+\frac{x^{2}}{1-x} \text { :3 تبيان أن : }
$$

$$
\begin{aligned}
1+x+\frac{x^{2}}{1-x} & =\frac{(1+x)(1-x)+x^{2}}{1-x} \\
& =\frac{1-x^{2}+x^{2}}{1-x}=\frac{1}{1-x}
\end{aligned}
$$

$I=\int_{0}^{\frac{1}{2}}(1+x) e^{-x} d x+\int_{0}^{\frac{1}{2}} x^{2} f(x) d x \quad: \quad 1-x$ $\int_{0}^{\frac{1}{2}} \frac{\mathrm{e}^{-x}}{1-x} \mathrm{~d} x=\int_{0}^{\frac{1}{2}} e^{-x}\left(1+x+\frac{x^{2}}{1-x}\right) \mathrm{d} x$
$=\int_{0}^{\frac{1}{2}} e^{-x}(1+x) d x+\int_{0}^{\frac{1}{2}} x^{2} \frac{e^{-x}}{1-x} d x$
$V=\int_{0}^{\frac{\pi}{2}} \pi[f(x)]^{2} d x=\pi \int_{0}^{\frac{\pi}{2}} \cos ^{2} x \mathrm{~d} x$
$\mathrm{V}=\pi \int_{0}^{\frac{\pi}{2}}\left(\frac{1+\cos 2 x}{2}\right) \mathrm{d} x=\pi \int_{0}^{\frac{\pi}{2}}\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right) d x$
$V=\pi\left[\frac{1}{2} x+\frac{1}{4} \sin 2 x\right]_{0}^{\frac{\pi}{2}}$

$$
\mathrm{V}=\pi\left[\frac{1}{2} \times \frac{\pi}{2}+\frac{1}{4} \sin \pi\right]-\pi\left[\frac{1}{2} \times 0+\frac{1}{4} \sin 0\right]=\pi\left[\frac{\pi}{4}\right]
$$

إنن

التُرين 16 :
1- إنشاء البيان :

2- حساب الحجم :
$\mathrm{V}=\int_{-1}^{1} \pi[f(x)]^{2} \mathrm{~d} x=\int_{-1}^{1} \pi\left(\sqrt{1-x^{2}}\right)^{2} \mathrm{~d} x=\pi \int_{-1}^{1}\left(1-x^{2}\right) \mathrm{d} x$
$\mathrm{V}=\pi\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}=\pi\left[\left(1-\frac{1}{3}\right)-\left(-1+\frac{1}{3}\right)\right]$
$\mathrm{V}=\pi\left[1-\frac{1}{3}+1-\frac{1}{3}\right]=\pi\left[2-\frac{2}{3}\right]=\pi \times \frac{4}{3}$

$$
V=\frac{4 \pi}{3} \mathrm{~cm}^{3}
$$

$$
\frac{1}{24} \leq \int_{0}^{\frac{1}{2}} x^{2} f(x) \mathrm{d} x \leq \frac{1}{12 \sqrt{\mathrm{e}}}
$$

7- استثتاج قيمةّ مقربة للعدد I $I=\int_{0}^{\frac{1}{2}}(1+x) e^{-x} d x+\int_{0}^{\frac{1}{2}} x^{2} f(x) d x \quad:$ $\int_{0}^{\frac{1}{2}}(1+x) e^{-x} d x=2+\frac{5}{2 \sqrt{e}} \quad: \quad$ ولدينا $:$: $\frac{1}{24} \leq \int_{0}^{\frac{1}{2}} x^{2} f(x) d x \leq \frac{1}{12 \sqrt{e}}$,
$-2+\frac{5}{2 \sqrt{\mathrm{e}}}+\frac{1}{24} \leq \int_{0}^{\frac{1}{2}}(1+x) \mathrm{e}^{-x} \mathrm{~d} x+\int_{0}^{\frac{1}{2}} x^{2} f(x) \mathrm{d} x \leq-2+\frac{5}{2 \sqrt{\mathrm{e}}}+\frac{1}{12 \sqrt{\mathrm{e}}}$ $\frac{-48 \sqrt{\mathrm{e}}+60+\sqrt{\mathrm{e}}}{24 \sqrt{e}} \leq I \leq \frac{-24 \sqrt{\mathrm{e}}+30+1}{12 \sqrt{e}}:$ وعيه

$$
\frac{60-47 \sqrt{e}}{24 \sqrt{e}} \leq I \leq \frac{31-24 \sqrt{e}}{12 \sqrt{e}}
$$

ومنـه : $I \simeq-0,4:$ وعليه

التمرين 15 :

$$
\begin{aligned}
& A=\int_{0}^{1}[y-f(x)] d x=\int_{0}^{1}[1-f(x)] d x \\
& A=\int_{0}^{1}\left(1-\frac{e^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right) \mathrm{d} x=\left[x-\ln \left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)\right]_{0}^{1} \\
& A=\left[1-\ln \left(\mathrm{e}+\mathrm{e}^{-1}\right)\right]-[0-\ln 2] \\
& A=\left[1-\ln \left(\mathrm{e}+\frac{1}{e}\right)+\ln 2\right] \mathrm{cm}^{2}
\end{aligned}
$$

$0 \leq(1-x)^{n} \mathrm{e}^{x} \leq \mathrm{e}$: تبيان أن (1)

$$
-1 \leq-x \leq 0 \text { : } 0 \leq x \leq 1 \text { : : }
$$

$$
0 \leq(1-x)^{\mathrm{n}} \leq 1: 0 \leq 1-x \leq 1 \text { : : } 0 \text { : }
$$

$$
1 \leq \mathrm{e}^{x} \leq \mathrm{e}: \text { : }
$$

$$
0 \leq(1-x)^{n} e^{x} \leq e: d i n
$$

$$
0 \leq I_{n} \leq \frac{e}{n!} \text { : النتنتاج أن }
$$

$$
0 \leq(1-x)^{n} e^{x} \leq e \quad \text { لدينا }
$$

$$
0(1-0) \leq \int_{0}^{1}(1-x)^{\mathrm{n}} \mathrm{e}^{x} \mathrm{dx} \leq \mathrm{e}(1-0) \text { : }
$$

$$
0 \leq \int_{0}^{1}(1-x)^{n} e^{x} d x \leq e:
$$

$$
0 \cdot \frac{1}{n!} \leq \frac{1}{n!} \int_{0}^{1}(1-x)^{n} e^{x} d x \leq \frac{1}{n!} e
$$

$$
\lim _{n \rightarrow+\infty} \frac{e}{n!}=0 \quad: \quad \text { : لدينا } 0 \leq I_{n} \leq \frac{e}{n!}
$$

$$
\lim _{n \rightarrow+\infty} I_{n}=0: \text {, }
$$

$f(x)=\frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}+1} \quad$: 1
$f(x)=\frac{\mathrm{e}^{x}-\frac{1}{\mathrm{e}^{x}}}{\mathrm{e}^{x}+\frac{1}{\mathrm{e}^{x}}}: \quad: \quad f(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}:$ لاينا

- $f(0)=0$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}+1}=\lim _{x \rightarrow+\infty} \frac{1-\frac{1}{\mathrm{e}^{2 x}}}{1+\frac{1}{\mathrm{e}^{2 x}}}=1$
- $f^{\prime}(x)=\frac{2 \mathrm{e}^{2 x}\left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x}\left(\mathrm{e}^{2 x}-1\right)}{\left(\mathrm{e}^{2 x}+1\right)^{2}}$
$f^{\prime}(x)=\frac{2 \mathrm{e}^{2 x}\left(\mathrm{e}^{2 x}+1-\mathrm{e}^{2 x}+1\right)}{\left(\mathrm{e}^{2 x}+1\right)^{2}}$

$$
f^{\prime}(x)=\frac{4 \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+1\right)^{2}} \quad: \quad \text { : }
$$

x	0		$+\infty$
$f^{\prime}(x)$		+	
$f(x)$			

$$
p(n): I_{n}=-\left(\frac{1}{n!}+\frac{1}{(n-1)!}+\ldots+\frac{1}{2!}+\frac{1}{1!}\right)+e
$$

$$
\begin{align*}
& \int_{0}^{1}(1-x) \mathrm{e}^{x} \mathrm{~d} x=-1+\mathrm{n} \int_{0}^{1}(1-x)^{\mathrm{n}-1} \mathrm{e}^{x} \mathrm{~d} x \\
& \frac{1}{n!} \int_{0}^{1}(1-x) \mathrm{e}^{x} \mathrm{~d} x=-\frac{1}{n!}+\frac{n}{n!} \int_{0}^{1}(1-x)^{n-1} \mathrm{e}^{x} \mathrm{~d} x \\
& I_{n}=-\frac{1}{n!}+\frac{1}{(n-1)!} \int_{0}^{1}(1-x)^{n-1} e^{x} d x \\
& I_{n}=-\frac{1}{n!}+I_{n-1} \\
& \text { 5-البر هان بالتر اجع عثى صحة : } \\
& p(n): I_{n}=-\left(\frac{1}{n!}+\frac{1}{(n-1)!}+\ldots+\frac{1}{2!}\right)+I_{1} \\
& \mathrm{I}_{2}=-\frac{1}{2}+\mathrm{I}_{1} \quad: \mathrm{p}(2) \text { (2) نتأكد من صحة } \\
& \text { ومنه (p(1) صحيحة من (4) } \\
& \text { p } \\
& p(k): I_{k}=-\left(\frac{1}{k!}+\frac{1}{(k-1)!}+\ldots+\frac{1}{2!}\right)+I_{1} \\
& p(k+1): I_{k+1}=-\left(\frac{1}{(k+1)!}+\frac{1}{k!}+\ldots+\frac{1}{2!}\right)+I_{1} \\
& I_{k+1}=-\frac{1}{(k+1)!}+I_{k} \tag{4}\\
& =-\frac{1}{(k+1)!}-\left(\frac{1}{k!}+\frac{1}{(k-1)!}+\ldots+\frac{1}{2!}\right)+I_{1} \\
& =-\left(\frac{1}{(\mathbf{k}+1)!}+\frac{\mathbf{1}}{\mathbf{k !}}+\ldots+\frac{\mathbf{1}}{2!}\right)+\mathrm{I}_{1}
\end{align*}
$$

10

－ا ا الاحتمالات المتساويةّ على مجمو عة منتهية．
－مصاط
نسمي تجربة عشو اليةة كل تجربةة لا يمكن توقع نتيجتها رغم مصرفة

．الإمكانيات و نرمز لها بالرمز
كل جز
 الحادثة الأكيدة هي Ω و الحادثة المستحيلة هي الدا كاتت A حادثة فإن حادثتها العكسبية هي

 ا

准
 الون الاحتمال p للتجربة العشوائية هو إرفاق بالعناصر $e_{n} ; \ldots ; e_{2} ; e_{1}$ أعدأدا حقنقية موجبة ．عا $e_{n} ; \ldots ; e_{2} ; e_{1}$ ． （1）

ه	e_{1}	e_{2}	．．．	e_{n}
الاحتمالات	p_{1}	p_{2}	．．．	p_{n}

$: 1$ dhale
 $1 \leq i \leq n$ من $0 \leq p_{i} \leq 1$

居
｜

$$
\begin{align*}
I_{2}=-\left(\frac{1}{2!}+\frac{1}{1!}+1\right)+e=-\left(\frac{5}{2}\right)+e=e-\frac{5}{2} \\
\left.I_{2}=-\frac{1}{2}+e-2=e-\frac{5}{2} \quad: \quad \text { : }\right\rfloor \quad I_{2}=-\frac{1}{2!}+I_{1} \tag{4}
\end{align*}
$$

p

$$
p(k): I_{k}=-\left(\frac{1}{k!}+\frac{1}{(k-1)!}+\ldots+\frac{1}{2!}+\frac{1}{1!}+1\right)+e
$$

$$
p(k+1): I_{k+1}=-\left(\frac{1}{(k+1)!}+\frac{1}{k!}+\ldots+\frac{1}{2!}+\frac{1}{1!}+1\right)+e
$$

من（4）：

$$
\begin{aligned}
I_{k+1} & =-\frac{1}{(k+1)}+I_{k} \\
& =\frac{-1}{(k-1)!}-\left(\frac{1}{k!}+\frac{1}{(k-1)!}+\ldots+\frac{1}{2!}+\frac{1}{1!}+1\right)+e \\
& =-\left(\frac{1}{(k+1)!}+\frac{1}{k!}+\ldots+\frac{1}{2!}+\frac{1}{1!}+1\right)+e
\end{aligned}
$$

إذن p(n) صحيحة من أجل كل عدد طبيعي p(n)

$$
\lim _{n \rightarrow+\infty}\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)=e \quad: \quad \text { : } 6
$$

$$
I_{n}=-\left(\frac{1}{n!}+\frac{1}{(n-1)!}+\ldots+\frac{1}{2!}+\frac{1}{1!}+\frac{1}{1!}\right)+e \text { : }
$$

$$
\lim _{n \rightarrow+\infty} \mathbf{I}_{\mathbf{n}}=0 \quad: \quad \text { ولدينا }
$$

$$
\lim _{n \rightarrow+\infty}\left[-\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)+e\right]=0
$$

إذن :

$$
\lim _{n \rightarrow+\infty}\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)=e
$$

S $=\sqrt{V}:$ الانحر افـ المعياري لقانون الاحتمال هو العدد S $\mathbf{V}=e_{1}^{2} \cdot p_{1}+e_{2}^{2} \cdot p_{2}+\ldots+e_{n}^{2} \cdot p_{n}-E^{2}: \begin{aligned} & \text { على الشثكل } \mathbf{V} \\ & \text { و يكن كتابة }\end{aligned}$

تعريف 1 :
م Ω نسمى متفيرا عشو انيا X Xل دالثة عددية معرفة على

ت 2 : 2 :
I متغنير عشبو أتي معرف على عمجمو عة النتائـج الممكنة لتجربة عشو ائية وو لتكن X مجموعةٌ قيم : $\mathrm{I}=\left\{x_{1} ; x_{2} ; \ldots \ldots . .0 ; x_{n}\right\}:$:

 $p\left(X=x_{i}\right)$ العولد I I
: 3 تعريف
 $E(X)=x_{1} p_{1}+x_{2} p_{2}+\ldots \ldots \ldots+x_{n} p_{n}$ التباين للمتغير X X هو العدد X (X) حيث

$$
\begin{aligned}
& -\mathrm{V}(\mathbf{X})=\left(x_{1}-E(X)\right)^{2} p_{1}+\left(x_{2}-E(X)\right)^{2} p_{2}+\ldots+\left(x_{n}-E(X)\right)^{2} p_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}(X)=e_{1}^{2} p_{1}+e_{2}^{2} p_{2}+\ldots \ldots+e_{n}^{2} p_{n}-(E(X))^{2}: \text { : } \\
& i \in\{1,2, \ldots \ldots, n\} \text {, } n \text { (} p_{i}=p\left(X=x_{i}\right): \text { ثن }
\end{aligned}
$$

: العد

居

نقول عندنذ أن قانون الاحتمال متساوي الثوزيع .فإذا كانت $\Omega=\left\{e_{1} ; e_{2} ; \ldots e_{n}\right\}$ مجموعة الإمكانيات و كاتت

$$
p_{1}=p_{2}=\ldots=p_{n}=\frac{1}{n}
$$

واذا كانت A حادثة تحتوي على m

$$
p(A)=m \cdot \frac{1}{n}
$$

ملاحظة 3 :

4خو اص الاحتمالات :

لتكن
($A \cap B=\varnothing$) B (إذا كانت B -

$$
p(A \cup B)=p(A)+p(B): \text { فإن }
$$

$$
\text { - إذا كانت A A } \text { ـ حادثتين كيفيتين فإن : }
$$

$$
p(A \cup B)=p(A)+p(B)-p(A \cap B)
$$

$$
p(\bar{A})=1-p(A): \text { : إنا كانت } A \text { الحادثة العكسية للحادثة }
$$

$$
p(\varnothing)=0, p(\Omega)=1-
$$

-

تعاريف :
$\Omega=\left\{e_{1} ; e_{2} ; \ldots . . ; e_{n}\right\}:$ مجموعة الإمكانيات لتجربة عشو أنية حيث Ω
 على الترتيب . $E=e_{1} \cdot p_{1}+e_{2} \cdot p_{2}+\ldots+e_{n} \cdot p_{n}:$ حيث E أمل قانون الاحتمال هو العدلـد

- تباين قاتون الاحتمال هو العدد V حيث :
$\mathbf{V}=\left(e_{1}-E\right)^{2} \cdot p_{1}+\left(e_{2}-E\right)^{2} \cdot p_{2}+\ldots+\left(e_{n}-E\right)^{2} \cdot p^{n}$

$$
C_{n}^{p}=\frac{n!}{(n-p)!\times p!}: ي
$$

ماحظة : ماحة

$$
\binom{n}{p} \text { و أرمز لعدد الثتوفقيقات بالزرمز : } C_{n}^{p}
$$

$: C_{n}^{p}$ صاصو
: C_{n}^{p} الدينا الخو اص الثّالية للعيد

$$
\begin{gathered}
C_{n}^{p}=C_{n}^{n-p} \quad C_{n}^{n}=1: C_{n}^{1}=n: C_{n}^{0}=1 \\
C_{n}^{p}=C_{n-1}^{p-1}+C_{n-1}^{p}
\end{gathered}
$$

السثلث العددي: و يعتمد في حساب C_{n}^{p} عثى الخواص الخمسة السابقة :

p	0	1	2	3	\cdots	$p-1$	p	\cdots	$n-1$	n
n										
0	1	0	0	0	0	0	0	0	0	0
1	1	1	0	0						0
2	1	2	1	0						0
3	1	3	3	1	0					0
\vdots										
$p-1$	1					1	0			0
p	1						1			0
\vdots										
$n-1$	1					C_{n-1}^{p-1}	C_{n-1}^{p}		1	0
n	1						C_{n}^{p}			1

لستور ثنائي الحد: إذا كان a و b عددان طبيعيان و n عدد طبيعي غير معدوم فابن:

$$
\begin{aligned}
& (a+b)^{n}=C_{n}^{0} a^{n-0} b^{0}+C_{n}^{1} a^{n-1} b^{1}+\ldots . .+C_{n}^{n} a^{n-n} b^{n} \\
& \text { : الاحنّمالات اللثرطية - III } \\
& \text {. }
\end{aligned}
$$

حيث : عدد القوانم :
 3

تنريف:
psn : عددان طبيعيان هيث p p و
نسمى ترتيبه ذات p عنصر ا هن مجمو عة ذات n n م مثشّى مثنى عدد التترتيبات :
E $A_{n}^{p}=n(n-1)(n-2) \times \ldots \times(n-p+1):$ عدد البترتيبات 4

تعريف :
. عدد ط n
. E نسمى تبديلة المجموعة $A_{n}^{n}=n(n-1)(n-2) \ldots(n-n+1):$ عدد التبّيلات هو

$$
A_{n}^{n}=n(n-1)(n-2) \times \ldots \times 1
$$

إذن :

$$
n!=n(n-1) \times \ldots \times 2 \times 1
$$

. الرمز n! يقرأ أ n أما

> تعريف :
 . E نسمى توفيقة عدد التـوفيقّات :

هنا القانون يسمى قانون التّوزيع المنظظم و نقول أن المتغير الـشوائي X يتبع قانون توزيع
منتظم . و هو موضح في الجبول الآتي :

X قيّ	x_{1}	x_{2}	...	x_{n}
p_{X} الاحتمال	$\frac{1}{n}$	$\frac{1}{n}$...	$\frac{1}{n}$

و يكون تمثيله كما يلي :

2 - 2 - قانون برنولم :

0<p<1 : عدد حقيقي حيث كل تُجربة لها مخرجين فقط احتمالهما
الوسيط p.p.

 العشُوائي X يسمى قانون برنولي ذو الوّوبط

نسي احتمال الحادثة B علما أن الحادثة A A محققة العدد (B)

$$
\begin{aligned}
p_{A}(B)= & \frac{p(A \cap B)}{p(A)}: \text { ـو مو معرف بالعبارة - التعريف لاينا : } 1
\end{aligned}
$$

- إذا كانت

$$
p_{A}\left(B_{1} \cup B_{2}\right)=p_{A}\left(B_{1}\right)+p_{A}\left(B_{2}\right)
$$

$$
p(A \cap B)=p(B) \times p_{B}(A)=p(A) \times p_{A}(B)
$$

نقول عن حادثين A و A أنهما مستقلتين إذا و فقط إذا كانت :

$$
p(A \cap B)=p(A) \cdot p(B) \quad: \quad p_{A}(B)=p(B)
$$

مبرهنة :

: دستور الاحتمالات الكلية - IV
 تعريف : نقول عن الحو ادث $A_{n}, \ldots . ., A_{2}, A_{1}$ أنها تجزنـة للمجموعة Ω إذا وفقّط إذا كانت

1-1- كل من هذه الحو ادث غير مستحيلة .
2- كـ كـ حادثتين من هذه الحو الدث غيز متلاالمتين .
3- اتحاد هذه الحو ادث يساوي
مبر هنة: (دستور الاحتمالات الكلية)
 . Ω ($\left.A_{1}, A_{2}, \ldots . ., A_{n}\right) . \Omega$ اذذا A انت A حادثة من Ω فإن و $P(A)=P_{A_{1}}(A) \cdot P\left(A_{1}\right)+P_{A_{2}}(A) \cdot P\left(A_{2}\right)+\ldots+P_{A_{n}}(A) \cdot P\left(A_{n}\right)$ دستور الاحتمالات الكلية . V V

1 - قانون اللتوزيع المنتظم :
ليكن X المتغير العشثوائي الثي قيمه : المعرف على مجموعة قيم المتّغير العشواني كما يلي : $p_{X}\left(x_{1}\right)=p_{X}\left(x_{2}\right)=\ldots=p_{X}\left(x_{n}\right)=\frac{1}{n}$

$$
\begin{array}{r}
\left(p_{i}\right)_{i \in\{1, \ldots, k\}} \\
d_{o b s}^{2}=\left(f_{1}-p_{1}\right)^{2}+\left(f_{2}-p_{2}\right)^{2}+\ldots+\left(f_{k}-p_{k}\right)^{2}
\end{array}
$$

هلاحظة: : المؤشر
: 2

هدددة و هي عبارة عن عدد يعطى أو يعين و يرفض اللنموذج في الحالة المعاكسة
و عادةٌ تعين العتية باستّعمال المحاكاةٌ كما يلي : لحاكي السلسلة الإحصائية المشاهدة ذات المقياس n باستنعمال النموذ n م الهوششر

 بالتشبيرات
لفنار كعتبة L العشبير التناسع L و

athath

据

ليكن X المتغير العشوائي ذو الوسبيط p لبرنولي
: X الأمل الرياضي للمتنغير العشوائي
$E(X)=1 . p+0 .(1-p)=p$
$\mathrm{V}(\mathbf{X})=p(1-p)^{2}+(1-p)(0-p)^{2}=p(1-p)$
3
نكرر تجربة برنولمي ذات الوسيط n, n مرة (n n) في نقس
الظروف المستقلة عن بعضها .
يعرف قانون الاحتمال
تجربة :

$$
\begin{array}{r}
p_{X}(k)=\left[\begin{array}{l}
n \\
p
\end{array}\right] \cdot p^{k} \cdot(1-p)^{n-k}: \text { كما يلي : أجل }
\end{array}
$$

$$
\text { ذو الوسبطين n } \quad \text { و } p(X)=n p \text { تمطي على التزتيب كما يلي }
$$

$$
\sigma(X)=\sqrt{V(X)}, V(X)=n p(1-p)
$$

- التنالوم هـع قَانون احتمال متقطع :

1 - 1 قياس التنلأم بين سلسلة مشاهلدة و نموذج احنمالثي . n لتكن اللسلسـة الإحصائية
.
لثقّاس الثتلاؤم بين اللنموذج p و هذه السلسلة المشاهدة ، نقارن بين (النتوتر xi يعطيها النموذج
 نموذج احتماللي منقّطع و منساوي الاحتمـالات حيث :

$$
\begin{array}{r}
\mathrm{V}(\mathrm{X})=\int_{\alpha}^{p}(x-E(X))^{2} f(x) d x \cdot E(X)=\int_{\alpha}^{\beta} x f(x) d x: ل \text { لدينا } \\
\sigma(X)=\sqrt{\mathrm{V}(\mathbf{X})}
\end{array}
$$

$$
\mathrm{V}(\mathrm{X})=\lim _{x \rightarrow+\infty} \int_{\alpha}^{x}(t-E(X))^{2} f(t) d t, E(X)=\lim _{x \rightarrow+\infty} \int_{\alpha}^{x} t f(t) d t
$$

و في حالة علم وجود الثهايات أو كانت غير منتهية فإن الأمل الرياضياتي غير موجود و عليه فالتباين غير موجود . و لتّسهيل حساب التباين لدينا :

$$
\mathbf{V}(\mathbf{X})=E\left(X^{2}\right)-[E(X)]^{2}=\int_{\alpha}^{\beta} x^{2} f(x) d x-[E(X)]^{2}
$$ 5 القانون الأنسي :

$f(x)=\lambda . e^{-\lambda x}$: كاصبة : الادلة f المعرفة على المجال [f :

\qquad
. λ ا عدد حقيقي موجب تماما

. λ. القانون الأسي ذو الوسيط
.』
 | | | " " الحصول على رقم مضاعف للعدد 6" C ا 1 | " الحصول على رقم أولي" | | | " الحصول عل رقم فردي " : $\overline{\mathbf{C} \cap \mathbf{D}}, \mathbf{C} \cap \mathbf{D}, \overline{\mathbf{C}} \cap \overline{\mathbf{D}}, \overline{\mathbf{D}} \cap \overline{\mathbf{C}}, \mathbf{A} \cap \|$

الاللة " كثّفة الاحتمال " :
تعريف :
نسمي دالة كثفةة احتمال كل دالة f f معرفة على المجال $[\alpha ; \beta]$ مستمرة على المجال $f(1$ $[\alpha ; \beta]$ ن x م $x(x) \geq 0$ (2 (أي مساحة الحيز المستوي المحدد بمحور الفقو اصل و منحنى الثالة $\int_{\alpha}^{\beta} f(x) d x=1$ (3
f f و المستقيمين الثين معادالتيوهما : $x=\beta=\alpha$ تساوي 1) . ملاحظة :
[إذا كانت الدالة f معرفة على مجال غير محدود كالمجال [$]$ $\lim _{x \rightarrow+\infty} \int_{\alpha}^{x} f(t) d t=1$: مثلا فإن الششرط المتّلقّ بالمساحة يكتب تعريف :
ليكن X متغيرا عشو ائيا مستمرا يأخذ قيمه في المجال I

$$
\begin{aligned}
& p_{X}([a ; b])=\int_{a}^{b} f(x) d x
\end{aligned}
$$

تُريف :
 قانون الاحتمال الذي يقبل f كاللة كثافة احتمال ، القاتون المنتظم على المجال [1 4- الأهل الرياضي ، اللتّاين ، و الآحر افت المعياري : تتريف :
X X متغير عشو ائي مستمر يتبع قانون احنمال يقبل f دالة كثّافة له مبرفة على المجال . \mathbb{R} ن $[\alpha ; \beta]$

6 يعطي ربح10 نقط و أن ظهور أي وجه آخر يعطي خسارة 5 نتّط. . ليكن X المتغنير العثواني الذي يأخذ قَيم اللنقط.
. . عين الأمل الرياضي و التباين و الالحر اف المعياري التمرين 8: 8 : | $C_{100}^{2}>2 C_{100-\mathrm{n}}^{2}\left(2 \quad C_{n}^{1}+C_{n}^{2}=10\right.$ (1 $\left\{\begin{array}{l}C_{x+y}^{y}=C_{x}^{y-1} \\ C_{x+y}^{2}=10\end{array}: \mathbb{N}^{2}\right.$ بحيث (x, y) (ب) : 9 الil

$$
x^{2}-\mathbb{C}_{n}^{\mathrm{p}} x+\mathbb{C}_{n-1}^{\mathrm{p}-1} \cdot \mathbb{C}_{n-1}^{\mathrm{p}}=0 \quad \text { : المعادلة } \mathbb{R} \text { ف ل ل }
$$

: 10 ني N ه ه ه بالتر اجع أنه من أجل كل عدد طبيحي غير معدوم

$$
(2 n+1)(2 n+3)(2 n+5) \ldots(4 n-1)=\frac{(4 n)!\cdot n!}{2^{n}[(2 n)!]^{2}}
$$

$$
C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+\ldots+C_{n}^{n}=2^{n} \text { : }
$$

) الدسب المجموع : $1+\frac{1}{2} C_{n}^{1}+\frac{1}{3} C_{n}^{2}+\ldots+\frac{1}{p+1} C_{n}^{p}+\ldots+\frac{1}{n+1} C_{n}^{\prime \prime}$
: 12 ن $\mathbf{~ ㅇ ~}$

. $x^{30} \cdot y^{20}(x+2 y)^{50}$: ماهو معامل الحد 1 : $(x+2 y)^{50}$ ($x^{40} \cdot y^{10}$ في
: 14 아레
 (I) ()

 $\mathbf{p}_{6}, \mathbf{p}_{5}, \mathbf{p}_{4}, \mathbf{p}_{3}, \mathbf{p}_{2}, \mathbf{p}_{1}$ اللعولو الأي يظهر عند السقوط . احتمالات الأوجه اللستّة : $p_{3}=\frac{1}{7}$ تشككل حدود منتالية حسابية بهزا الترتيب إذا علمت أن

$$
\mathbf{p}_{6}, \mathbf{p}_{5}, \mathbf{p}_{4}, \mathbf{p}_{3}, \mathbf{p}_{2}, \mathbf{p}_{1} \text { (1) }
$$ الْمر اين 3 : احسب احتمال ظهور رقم أولي . 3) احسب احتمال ظهور رقم أكبر هن 3. نرمز لوجهي قطعة نقود متو ازنـة بالرمزين F F للوجه ، م p نرمي هذه القططعة أربع مرات متتّالية. 1 1- أنُشئ مخططط يوضتح كل الحالات. 2- احسب احتمال الحادثّة B المعرفةهة بظهور ظظهرين و وجهين في أي ترتيب. 3- احسب احتمال الحادثة C الممرفةّ بظهور وجه واحد في أي تريّتيب

يحتوي كيس على 4 كرات مرقمة من 1 إلى 4 لا تفرق بينها عثد اللمس . نسحب من الكيس

1- أنشئ مخططا يبين كل الحالات.
2- احسبب الاحنمال لانز تكون الكريه الثثانية تحمل الرقم 2 .
التمرين 5 :
يحتوي كيس على 4 كرات مرقمة من 1إلى 4 لا نفرق بينها عند اللمس . نستحب من الكيس كريتان على اللتو اللي دون إرجاع الكرة المسحوبة إلى الكيس بعل كل سحبة .

1- أنشى مخططا يبين كل الحالات.
2- أحسب الاحتمال لأن تكون الكريه الثاتية تحمل الرقمّ 2
التمرين 6 :
$\Omega=\{1,2,3,4,5,6\}$ نعتبر المجموعة الشاملة في تجربة عشوائية
ون وا

1- عين اللعدد اللحقيقي 2 ـ الحسب الأمل اللرياضني لـهنا القاتون

$$
\text { التمرين } 7 \text { : - }
$$

زهر نرد فير مزيفة أوجهها مرقمة من 1 إلى 6 . نقـذف القطعة نحو الأعلى و نر اقب الوجه اللملوي يظهر عند سقوطها . نفرض أن ظهور رقم أولي يعطي ربح 20 نقطةّ و انْ ظهور الرملم
 (3) عين قانون الاحتمال للمتغيز العشو اني
 التمرين 21 :
في مصنع لإتاج الحو اسيب هناك ثلآلة سلاسل للتركيب هي C الترتيب \% 50 و \% 40 و \% 10 من الإتاج الككلي للمصنع . احتمال أن وكون الحاسوب المركب صالح للاستنعمال في كل من السلاهل 0,7 على الترتيب.ماهو احتمال أن يكون الحاسوب المنتج في المصنع صلالح للاسنتعمال

لِحتوي و عاء على 100 كريه مرقّمة من 1 إلى 100 .
 1) بين أنها تجربة لبرنولي. 2) أحسب احتمال كل من الريبح و الخسارة. 3) ليكن X المتئغير الـشوا

$$
\text { احسب } \sigma(x), V(x), E(x)
$$

الالتمرين 23 :

$$
\text { وليكن X المتّغير العشو اني الذي يعد عدد النجاحات خال } 10 \text { تجارب. }
$$

لوتوي و عاء على4 4 اترات بيضاءو و 5 كرات سوداء لا نفرق بينها عند اللمس 1- نسحب من الكيس 5 كرات على الثّو الثي ودون إعادة () احسب احتمالّ سحب 4 كرات سوداءو و كرة بيضاء بهغا الترّتيب (ب) لـا احتمال سحب كرة بيضاء و واحدة خلال السحبات الالزبعة. 2
 : 25 (

. n (سحب) الشیدبات
p_{n} (1
 $n \rightarrow+\infty$ \qquad الـ لر اسة إحصانية حول منتوج تُجاري A تيين أن احتمال أن بختار هنا المنتو ج من طرف

5) كم عددا مكونا من 10 أرقام (متمايزة مشثى مشثى) يمكن تشكيله من هذه الأعدالد 6) كم مجموعة جزنية يمكن تشثكيلها من هنده الأعداد بحيث تشمل كل كل واحدة هنها على 4 عثاصر. 7) كم مجموعة جزنية ذات 10 عناصر يمكن تثككيلها من هذه الأعداد

التمرين 15 :
كم عددا يمكن تشكيله باستذذ ام الأرقام : 0 ، 1 ، 2 ، . . . 9
اذذا كانت هذه الأعداد مكونة من :

1) 4 أرقام . 2) 4 أرقام متمايزة مثنّى شثّنى .

 في أنّ واحد و بلا اختيار ونفرض أنْ كل السحبات متساوية الاحتمال احسب احتمال سحب :

2) 3 كرات بيضاء . . 3 (4) 3 كرات غير حمراء .
3) كرتين حمر اوين على الأكثر .
4) كرة حمراء على الألّل .
5) كرة بيضاء واحدة .

يحتوي كيس 17 على 20 كرية مرقمة من 1 إلى 20 نسحب بلا إختيار كرية واحدة من من الكيس . ونعتبر أن جميع السحبات متساوية الاحتمال . p احتمال معرف على التجربة

لتكن A الحادثة : " رقم الكريه المسحوبة هو عدد أولي"
ولتكن B الحادثة : "رقم الكريه المسحوبة من مضاعفات 3"

- احسب الاحتمالات التّالية.

$$
\left.\left.\cdot p_{A}(B){ }_{(4} \quad \cdot p_{B}(A)\right)_{3} \quad \cdot p(B)\right)_{2} \quad \cdot p(A)(1
$$

التمرين 18 : يحتوي كيس على 15 قريصة مرقمة من 1 إلى 15. نسَّب بلا اختيار في آن واحد قريصتين. 1- الحسب احتمال سحب قريصتين مجموعهوها 15.
 3- احسب احتمال سحب قريصتين مجموع رقميهما 15 علما أن فرقهما 5.

4- هل الحادثيّن A و B مستقلتّين ؟
 احسب احتمال كل من الحو الثث التّالية :

. $\mathbf{A} \cup \overline{\mathbf{B}}$	$\mathbf{1}_{3}$. $\mathbf{A} \cup \mathbf{B}$	$(2$. $\mathbf{A} \cap \mathbf{B}$
(1)				
.$\overline{\mathbf{A}} \cup \overline{\mathbf{B}}$	$(6$.$\overline{\mathbf{A}} \cap \overline{\mathbf{B}}$	$(5$.$\overline{\mathbf{A}} \cup \mathbf{B}$

زهرتي نرد متو ازنتّين التمرين 20 :
وملونتين بلونيين مختلفين أوجه كل منوما مرقمة من 1 ما 1
إلى 6 . نرمي هنين النردين نحو الأعلى و نسجل الرقمين الذان يظهوان على الوجهين العلويين عند السقوظُ ليكنX المتغنير العشواني الذي برفق بنتّجة كل رمي:
ـ العدد 0 إذا كان الرقمان فرديين .- العدد الأكبر المحصل عليه اذذا كان الرقمان زوجيين .
. 1 أحسب النوسيط λ اللقانون الأسي 2- أحسب احتمال أن يتم انشطار نواةٌ في أقل من 150 سنة. 3- أحسب احتمال أن يتم انثشطار نواة على الآلّل في 150 سنة. 4- أحسب المدة المتوسطة لالشطار المنواة. الالتُرين 30 : ($\lambda>0$) , λ ليكن X X متغير عشواني يتبع قانون أسي وسيطه $\int_{0}^{x} \lambda \mathrm{t}^{-\lambda t} \mathrm{dt}$: اليكن x عدد حقيقي موجب . احسب بالتّجزنة
E (x) الستنتج الامل الرياضياتي $\lim _{x \rightarrow+\infty} \int_{0}^{x} \lambda t \mathrm{e}^{-\lambda t} d t$ $\int_{0}^{x} \lambda t^{2} e^{-\lambda t} d t$:
$V(x)$: الستْتِج التّباين $. \lim _{y \rightarrow+\infty} \int_{0}^{y} \lambda t^{2} \mathrm{e}^{-\lambda t} d t:$ احسب

لا

$\Omega=\{1,2,3,4, \ldots, 29,30\}$: ا- الصجموعة الشاملة $A=\{8,16,24\} ; B=\{6,12,18,24,30\}$:
$C=\{2,3,5,7,11,13,17,19,23,29\}$
$\mathrm{D}=\{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29\}$
A $\cap \mathbf{B}=\{24\}$ ت ت ت ت
$\overline{\mathrm{C}}=\{1,4,6,8,9,10,12,14,15,16,18,20,21,22$, $24,25,26,27,28,30\}$
$\overline{\mathrm{D}}=\{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30\}$ $\overline{\mathbf{C}} \cap \overline{\mathbf{D}}=\{4,6,8,10,12,14,16,18,20$,

$$
22,24,26,28,30\}
$$

$\mathrm{C} \cap \mathrm{D}=\{3,5,7,11,13,17,19,23,29\}$

ليكن X عدد الأشُخاص الذين يختّارون هـا المنتو ج من بين العينة التّي تم استجو ابها من أجل $k \in\{0 ; 1 ; 2 ; \ldots ; 20\}$
1 2- ما هو احتمال أن يختّار 4 أشخاص من هذه العينة هذا المنتو ج . التّمرين 27 :
ما هو احتمال الحصول على 3 ذكور في 5 ولادات علما أن احتمال الحصول على ذكر يساوي احتمال الحصول على بنت.
(أجرت در اسة إحصائية في 200 قاعة سيئما اختيرت عثوائيا حول إقبال الزبايأن على هذه

الشههور	1	2	3	4	5	6	7	8	9	10	11	12
اللنسوبية	9	10	7,5	7,5	7	6	6	5	8	10,5	10,5	13

1- ما هو قانون الاحتمال p الذي تقترحه لنمذجة القفرضبة : "الالقبال على قاعات الشيينما مستقلّل عن أشهر السنةّة" 2- ما هي الطريقة التي تقترحها المحاكاة سلسلة وفق التّانقانون p.
 $i \in\{1 ; 2 ; \ldots ; 12\}: d^{2}=\sum_{i=1}^{i=12}\left(f_{i}-p_{i}\right)^{2}: d^{2}$ التّاوم و pi
 4- قمنا بمحاكاة التجرية في 500 سلسلة حيث كل سلسلة ذات 200 قيمة تتبع القانون p و إليك التمثيل بعابة لقيم

 وسيظه λ ($\lambda>0$) . في لر اسة تمت على الأكوية تبين أن مدة الحياةٌ لـ \% 5 منها اصنر أو تساوي 100 سنة .

$$
\text { أي احتمال ظهور الحادثة : A=\{2, } \mathbf{~}
$$

$$
p(A)=\frac{10}{21}: p(A)=p_{2}+p_{3}+p_{5}=\frac{2}{21}+\frac{1}{7}+\frac{5}{21}
$$

3- احتمال ظهور رقم أكبر من 31 :

$$
\text { أي احتمال ظهور الحادثة : B=\{4,5\} }
$$

$p(B)=p_{4}+p_{5}=\frac{4}{12}+\frac{5}{21}=\frac{9}{21}$

$$
\text { p(B)= } \frac{3}{7} \quad: \quad \text { ممنه الاحتمال }
$$

التّمرين 3 :
: 1-المخطط

: 2
$\overline{\mathrm{C} \cap \mathrm{D}}=\{0,1,2,4,6,8,9,10,12,14,15,16$, $18,20,21,22,24,25,26,27,28,30\}$

التمرين 2 :
$p_{6}, p_{5}, p_{4}, p_{2}, p_{1}$ حساب كل من نفرض r انساس المنتالية الحسابية .

$$
p_{1}=\frac{1}{7}-2 r \text { أي } p_{1}=p_{3}-2 r \text { ومنـا } p_{3}=p_{1}+2 r
$$

$$
p_{2}=\frac{1}{7}-\mathbf{r} \text { ئ } p_{2}=p_{3}-\mathbf{r} \text { ing } p_{3}=p_{2}+\mathbf{r}
$$

$$
\mathbf{p}_{4}=\frac{1}{7}+2 \mathbf{r} \quad \mathbf{p}_{4}=\mathbf{p}_{3}+\mathbf{r}
$$

$$
p_{5}=\frac{1}{7}+2 r \quad p_{5}=p_{3}+2 r
$$

$$
p_{6}=\frac{1}{7}+3 r \quad \operatorname{ding} p_{6}=p_{3}+3 r
$$

$$
p_{1}+p_{2}+p_{3}+p_{4}+p_{5}+p_{6}=1: \text { وبما انن }
$$

$$
\frac{1}{7}-2 r+\frac{1}{7}-r+\frac{1}{7}+\frac{1}{7}+r+\frac{1}{7}+2 r+\frac{1}{7}+3 r=1: \text { فإن }
$$

$$
r=\frac{1}{21}: 3 r=\frac{1}{7}: \quad \text { ومنه }: \quad \frac{6}{7}+3 r=1 \quad 3
$$

$$
p_{1}=\frac{1}{21} \quad: \quad p_{1}=\frac{1}{7}-2 \cdot \frac{1}{21}: \text { وعنـه }
$$

$$
p_{2}=\frac{2}{21} \quad: \quad \text { : } \quad p_{2}=\frac{1}{7}-\frac{1}{21}
$$

$$
p_{4}=\frac{4}{21} \quad: \quad p_{4}=\frac{1}{7}+\frac{1}{21}
$$

$$
p_{5}=\frac{5}{21} \quad: \quad: \quad p_{5}=\frac{1}{7}+\frac{2}{21}
$$

$$
p_{6}=\frac{2}{7}: p_{6}=\frac{6}{21}=\frac{2}{7} \quad: \quad p_{6}=\frac{1}{7}+\frac{3}{21}
$$

قدد الحالات الممكنة هو : $4 \times 3=12 \times$

$$
\begin{aligned}
& E=1 \times \frac{7}{30}+2 \times \frac{1}{30}+3 \times \frac{4}{30}+4 \times \frac{3}{30}+5 \times \frac{5}{30}+6 \times \frac{10}{30} \\
& E=\frac{118}{30} \simeq 3,93
\end{aligned}
$$

$$
V=(1)^{2} \times \frac{7}{30}+(2)^{2} \times \frac{1}{30}+(3)^{2} \times \frac{4}{15}+(4)^{2} \times \frac{3}{30}
$$

$$
+(5)^{2} \times \frac{5}{30}+(6)^{2} \times \frac{10}{30}-(3,93)^{2}
$$

$$
\begin{aligned}
& p_{1}+p_{2}+p_{3}+p_{4}+p_{5}+p_{6}=1: \text { :لدينا : } \alpha \text { | } \\
& \frac{7}{30}+\frac{1}{30}+\frac{4}{30}+\alpha+\frac{5}{30}+\frac{10}{30}=1: 4,1 \\
& \alpha=1-\frac{27}{30}: \operatorname{dog} \frac{27}{30}+\alpha=1 \\
& \alpha=\frac{1}{10} \quad \text { iो } \quad \alpha=\frac{3}{30} \\
& \text { : }
\end{aligned}
$$

FPPF, PFFP, PFPF , PPFF , FFPP , FPFF :

$$
p(B)=\frac{6}{16}=\frac{3}{8}: \text { وعليه }
$$

3- عـد الحتد الحـالات اللات الممكانمـنة

كدد الحالات الممكنة هو : 16 عدد الحالات المطلمّة هو : 4 وهي: PFPP, PPFP, PPPF, FPPP

$$
p(C)=\frac{4}{16}=\frac{1}{4}:
$$

التمرين 4 :

: 1

2- حساب الاحتمال :
عدي الحالات الممكنة هو : $p=\frac{4}{12}=\frac{1}{4}:$ ع.د الحالات المملانمة :

$$
n+\frac{n!}{(n-2)!2!}=10 \text { مدينا } n \geq 2 \text { لدن } n \geq
$$

$\mathbf{n}+\frac{\mathbf{n}(\mathbf{n}-1)}{2}=10 \quad$ ومنه $\quad \mathrm{n}+\frac{\mathrm{n}(\mathbf{n}-1)(\mathbf{n}-2)!}{(\mathbf{n}-2)!.2!}=10:$,

$$
n^{2}+n-20=0 \quad: \quad \frac{2 n+n^{2}-n}{2}=10: \text { وبالتّالي : }
$$

 $C_{1000}^{2}>2 C_{1000-n}^{2}$: بحيث n n $C_{1000}^{2}>2 \times 0$: 0 : لدينا \quad n

$$
\text { أي C } \text { C }_{1000}^{2} \text { وهي محققة. }
$$

$$
\frac{1000!}{(1000-2)!\cdot 2!}>2 \frac{(1000-n)!}{(1000-n-2)!\cdot 2!}
$$

$$
\frac{1000!}{998!.2!}>2 \frac{(1000-n)!}{(1000-n-2)!\cdot 2!}
$$

$\frac{(1000)(999)(998)!}{998!.2}>$

$$
\frac{(1000-n)(1000-n-1)(1000-n-2)!}{(1000-n-2)!}
$$

$$
\frac{(1000)(999)}{2}>(1000-n)(999-n)
$$

$$
500.999>999000-1000 n-999 n+n^{2}
$$

$$
-n^{2}+1999 n-999000+495500>0
$$

$$
-n^{2}+1999 n-499500>0
$$

$$
\Delta=1998001 \text { ومنه } \Delta=(1999)^{2}-4(-1)(-499500)
$$

$$
n_{2}=\frac{-1999-\sqrt{\Delta}}{-2}, n_{1}=\frac{-1999+\sqrt{\Delta}}{-2}
$$

$$
n_{2} \simeq 1706,25 \quad n_{1} \simeq-292,7
$$

n	$-\infty$	n_{1}	$\mathrm{n}_{2} \quad+\infty$	
$-\mathrm{n}^{2}+1999 n-4995000$	-	0	+	0

$$
\begin{aligned}
& V=\frac{7+4+9 \times 4+16 \times 3+25 \times 5+36 \times 10}{30}-\left(\frac{118}{30}\right)^{2} \\
& V=\frac{580}{30}-\frac{(118)^{2}}{(30)^{2}}=\frac{580 \times 30-(118)^{2}}{(30)^{2}}=\frac{3476}{900} \simeq 3,86 \\
& \text { 4- الانحر اف المعياري : } \sigma=\sqrt{3,86} \simeq 1,96 \text { م } \quad \sigma=\sqrt{V}: \text { منها } \\
& -5 \text { ، } 10 \text { ، } 20 \text { : } \\
& \text { 'p }(x=10)=\frac{1}{6} \\
& \text { قاّنون الاحتمال : }
\end{aligned}
$$

$$
p(x=-5)=\frac{2}{6}=\frac{1}{3} \cdot p(x=20)=\frac{3}{6}=\frac{1}{2}
$$

X_{i}	20	10	-5
$\mathrm{p}\left(X=X_{i}\right)$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{3}$

$E=20 \times \frac{1}{2}+10 \times \frac{1}{6}+(-5) \times \frac{1}{3}=10+\frac{5}{3}-\frac{5}{3}=10$

- الـنباين -
$V=(20)^{2} \times \frac{1}{2}+(10)^{2} \times \frac{1}{6}+(-5)^{2} \times \frac{1}{3}-(10)^{2}$
$V=200+\frac{100}{6}+\frac{25}{3}-100$
$V=100+\frac{50}{3}+\frac{25}{3}=100+\frac{75}{3}=\frac{375}{3}=125$
ـ الانحر افـ المعيـار ي :

$$
\sigma=\sqrt{V}=\sqrt{125} \simeq 11,18
$$

$C_{n}^{1}+C_{n}^{2}=10$: بحيث n n (1) (1)

من أجل 1 أي 1 = 1 م 1 مستحيلة
$11(k+1): \underbrace{(2 k+3)(2 k+5) \ldots(4 k+3)}_{A}=\underbrace{\frac{(4 k+4)!(k+1)!}{2^{k}[(2 k+2)]^{2}}}_{B}$

$$
A(2 k+3)(2 k+5) \ldots(4 k+3)
$$

$(2 k+1) \times(2 k+3)(2 k+5) \ldots(4 k-1)(4 k+1)(4 k+3)$

$$
(2 k+1)
$$

$$
(2 k+1)(2 k+2) \ldots(4 k-1) \cdot \frac{(4 k+1)(4 k+3)}{(2 k+1)}
$$

$$
=\frac{(4 k)!\cdot k!}{2^{k} \cdot[(2 k)!]^{2}} \times \frac{(4 k+1)(4 k+2)(4 k+3) \times(4 k+4)(k+1)}{(2 k+1) \times(4 k+2) \times(4 k+4) \times(k+1)}
$$

$$
A=\frac{(4 k+4)(4 k+3)(4 k+2)(4 k+1)(4 k)!\cdot(k+1)(k)!}{2^{k} \cdot(2 k)!(2 k)!(2 k+1)(2 k+2) \cdot 2(2 k+1) \cdot 2(2 k+2)(k+1)}
$$

$$
A=\frac{(4 k+4)!\cdot(k+1)!}{2^{k+1} \cdot(2 k+2)(2 k+1)(2 k)!\cdot(2 k+2)(2 k+1)(2 k)!}
$$

$$
A=\frac{(4 k+4)!(k+1)!}{2^{k+1}(2 k+2)!\cdot(2 k+2)!}
$$

$$
A=\frac{(4 k+4)!(k+1)!}{2^{k+1}[(2 k+2)!]^{2}}=B
$$

$$
C_{n}^{0}+C_{n}^{1}+\ldots+C_{n}^{n}=2^{n}: \text { نبرهن أن }
$$

$$
(x+y)^{n}=C_{n}^{0} x^{n-0} y^{0}+C_{n}^{1} x^{n-1} y^{1}+\ldots+C_{n}^{n} x^{n-n} y^{n}:
$$

$$
\text { : نجد } x=y=1
$$

$$
\begin{aligned}
& (1+1)^{n}=C_{n}^{0}+C_{n}^{1}+\ldots+C_{n}^{1} \\
& C_{n}^{0}+C_{n}^{1}+\ldots+C_{n}^{n}=2^{n} \\
& \left.p C_{n+1}^{p}=(n+1) \cdot C_{n}^{p+1}: ن \mid+1\right) \\
& p \cdot C_{n+1}^{p}=p \cdot \frac{(n+1)!}{(n+1-p)!p!}
\end{aligned}
$$

$0 \leq n \leq 998$ ومنه $n \in] n_{1} ; n_{2}$ ومنه : $n \in \mathbb{N}$: $n \in[0 ; 998]$ إن $n \in$ كما سبق

$$
\text { التمرين } 9 \text { : ---- }
$$

$$
x^{2}-C_{n}^{p} x+C_{n-1}^{p-1} \cdot C_{n-1}^{p}=0 \text { : حل المعاددلة }
$$

$$
\begin{aligned}
& \Delta=\left(-C_{n}^{p}\right)^{2}-4 \cdot 1 \cdot C_{n-1}^{p-1} \cdot C_{n-1}^{p} \\
& \Delta=\left(C_{n}^{p}\right)^{2}-4 C_{n-1}^{p-1} \cdot C_{n-1}^{p} \\
& \Delta=\left(C_{n-1}^{p-1}+C_{n-1}^{p}\right)^{2}-4 C_{n-1}^{p-1} \cdot C_{n-1}^{p} \\
& \Delta=\left(C_{n-1}^{p-1}\right)^{2}+2 C_{n-1}^{p-1} \cdot C_{n-1}^{p}+\left(C_{n-1}^{p}\right)^{2}-4 C_{n-1}^{p-1} \cdot C_{n-1}^{p} \\
& \Delta=\left(C_{n-1}^{p-1}\right)^{2}-2 C_{n-1}^{p-1} \cdot C_{n-1}^{p}+\left(C_{n-1}^{p}\right)^{2}=\left(C_{n-1}^{p-1}-C_{n-1}^{p}\right)^{2}
\end{aligned}
$$

$$
\text { إذن } 0 \text { > ومنه للمعادلة حلين متمايزين. }
$$

$$
x_{2}=\frac{C_{n}^{p}+\left(C_{n-1}^{p-1}-C_{n-1}^{p}\right)}{2}, \quad x_{1}=\frac{C_{n}^{p}-\left(C_{n-1}^{p-1}-C_{n-1}^{p}\right)}{2}
$$

$$
x_{2}=\frac{C_{n-1}^{p-1}+C_{n-1}^{p}+C_{n-1}^{p-1}-C_{n-1}^{p}}{2}, x_{1}=\frac{C_{n-1}^{p-1}+C_{n-1}^{p}-C_{n-1}^{p-1}+C_{n-1}^{p}}{2}
$$

$$
x_{2}=C_{n-1}^{p-1} \quad, \quad x_{1}=C_{n-1}^{p} \quad: \quad \text { : }
$$

$$
\text { S }=\left\{C_{n-1}^{p-1}, C_{n-1}^{p}\right\}: \text { مجموعة الحلول }
$$

$$
p(n):(2 n+1)(2 n+3)(2 n+5) \ldots(4 n-1)=\frac{(4 n)!\cdot n!}{2^{n}[(2 n)!]^{2}}
$$

$$
3=\frac{4!\cdot 1!}{2 \cdot(2)^{2}}=\frac{4 \times 3 \times 2}{2.4}=3: n=1 \text { من أجل }
$$

ومنه (1) صحيحة.
$p(k):(2 k+1)(2 k+3)(2 k+5) \ldots(4 k-1)=\frac{(4 k)!\cdot k!}{2^{k}[(2 k)!]^{2}}$

$$
\begin{aligned}
& (x+2 y)^{50}=\sum_{p=0}^{p=50} C_{50}^{p} x^{50-p} \cdot(2 y)^{p} \\
& (x+2 y)^{50}=\sum_{p=0}^{p=50} C_{50}^{p} \cdot 2^{p} \cdot x^{50-p} \cdot y^{p}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
50-p=30 \\
p=20
\end{array}: x^{30} \cdot y^{20}\right. \text {) لدينا }
$$ 2

 $\mathbf{A}_{9}^{4}=3024 \quad{ }^{4}$ (3) $\mathbf{A}_{9}^{4}=\frac{9!}{(9-4)!} \quad$ عدد الأعداد هو : \mathbf{A}_{9}^{4} :

$$
\text { 7) عدد المجموعات هو } 0 \text { : لأن : C } 0 \text {. }
$$

: 15 ن
abcd عدد الأعداد المكونة من 4 أرقام : وهي من الثشكل d 10 إمكانيات لاختيار رقم الآحاد d C CN1
bl a لدا
$10 \times 10 \times 10 \times 9: 9$
9×10^{1},
 $A_{10}^{4}=5040$: abcd : هدد الأعداد من الشثكل

$A_{00}^{4}-A_{0}^{3}=4536: a \neq 0$ هو abcd \mathbf{a} abed

$$
p \cdot C_{n+1}^{p}=\frac{p \cdot(n+1)!}{[n-(p-1)]!\cdot p(p-1)!}: \text { ومنه }
$$

$$
p \cdot C_{n+1}^{p}=(n+1) \cdot \frac{n!}{[n-(p-1)]!\cdot(p-1)!}: \text { وعليه }
$$

$$
\text { p. } \mathbf{C}_{n+1}^{p}=(n+1) \cdot C_{n}^{p-1}:
$$

$$
\frac{1}{1} \cdot C_{n}^{0}+\frac{1}{2} C_{n}^{1}+\frac{1}{3} C_{n}^{2}+\ldots+\frac{1}{p+1} C_{n}^{p} \ldots+\frac{1}{p+1} C_{n}^{n}: \text { حساب (3 }
$$

$$
\frac{1}{p} \cdot C_{n}^{p-1}=\frac{1}{n+1} C_{n+1}^{p} \quad \text { وعليه } p \cdot C_{n+1}^{p}=(n+1) C_{n}^{p-1}: \text { لدينا من }
$$

$$
\frac{1}{1} \cdot C_{n}^{0}=\frac{1}{n+1} C_{n+1}^{1} \quad: p=1: 1: \text { ومنه }
$$

$$
\frac{1}{2} \cdot C_{n}^{1}=\frac{1}{n+1} C_{n+1}^{2} \quad: p=2: \text { L }
$$

$$
\frac{1}{3} \cdot C_{n}^{2}=\frac{1}{n+1} C_{n+1}^{3} \quad: p=3: L
$$

$$
\frac{1}{n+1} \cdot C_{n}^{n}=\frac{1}{n+1} C_{n+1}^{n+1} \quad: p=n+1: \text { L }
$$

$$
\frac{1}{1} C_{n}^{0}+\frac{1}{2} C_{n}^{1}+\ldots+\frac{1}{n+1} C_{n}^{n}=\frac{1}{n+1}\left(C_{n+1}^{1}+C_{n+1}^{2}+\ldots+C_{n+1}^{n+1}\right)
$$

$$
\frac{1}{1} C_{n}^{0}+\frac{1}{2} C_{n}^{1}+\frac{1}{3} C_{n}^{2}+\ldots+\frac{1}{n+1} C_{n}^{n}=\frac{1}{n+1} \cdot\left[2^{n+1}-C_{n+1}^{0}\right]
$$

$$
1+\frac{1}{2} C_{n}^{1}+\frac{1}{3} C_{n}^{3}+\ldots+\frac{1}{n+1} C_{n}^{n}=\frac{1}{n+1} \cdot\left[2^{n+1}-1\right]: \text { : }!
$$

$$
\begin{equation*}
(5 x+1)^{100}=\sum_{p=0}^{p=100} C_{100}^{p}(5 x)^{100-p} \tag{1}
\end{equation*}
$$

$(5 x+1)^{100}=\sum_{p=0}^{p=100} C_{100}^{p} 5^{100-p} \cdot x^{100-p}$

$$
p_{4}=\frac{60}{1140} \text { : الاحتمال }
$$

3) عدد الأعداد المكونةّ هن 4 أرقام و تكون هضاعفة للعدد 5 :
 وعدد كل منها يحسب كمايلا
لدينا : 2 إمكاتيات لاختيار رقم الآحاد (0 أو 5).
c ومع كل اختيار لرقم الآحاد لدينا 10 إمكاتيات لاختيار رقم العشر ات الات
 ومع كل اختيار لأرقام الآحاد و العشبر ات و المنات لاينا 9 إمكانيات لاختيار رقم الآلافـ a لأن

$$
a \neq 0
$$

ومنهـ عدد الأعداد هو : 1800 عدد.
$9 \times 10 \times 10 \times 2=18 \times 10^{2}=1800$

$$
a \neq 0 \quad \text {, } \quad \text { : } \quad c \in\{1,3,5,7,9\}:
$$

(اليسار)
. لدينا 5 إمكانيات لاختيار
 a ومع كل اختيار للرقمّ c و الرقمّ b لدينا 8 إمكانيات لاختيار

$$
5 \times 9 \times 8=360 \text { : ومنه عدد الأعداد هو }
$$

: عدد الأعداد من الشكل 0bc هو الشا
c لدينا 5 إمكانيات لانتيار
و و مـع كل اختيار للثدد c
 مثنى و فردية هو : $360-40=320$

$$
\text { عدد السحبات المصكنة : } C_{20}^{3}=1140
$$

$C_{6}^{3}+C_{10}^{3}+C_{4}^{3}=84$

1) عدد الحالات المطلاتمة لسحب 3 كرات من نفس اللون :

$$
p_{1}=\frac{84}{1140} \quad:
$$

2) عدد الحالات المـلانمة لسحب 3 كرات مختلفة اللون.

$$
\begin{aligned}
& p_{2}=\frac{240}{1140}: C_{6}^{1}+C_{10}^{1}+C_{4}^{1}=240 \\
& C_{6}^{3}=20 \quad \text { :لاحتمال } 30 \text { عدد الحالات الملانمـة لسحب } 3 \text { كرات بيضاء } 30
\end{aligned}
$$

$$
p_{3}=\frac{20}{1140}: \text { الاحتمال }
$$

$C_{15}^{2}=105 \quad$: 15 الحادثة المعرفة بسجهو ع الرقّهين بساوي
$A=\{2,3,5,7,11,13,17,19\}$
$B=\{3,6,9,12,15,18\}$
$A \cap B=\{3\}$

$$
p(B)=\frac{C_{6}^{1}}{C_{20}^{1}}=\frac{6}{20}=\frac{3}{10}\left(2 . \quad p(A)=\frac{C_{8}^{1}}{C_{20}^{1}}=\frac{20}{8}=\frac{4}{5}\right.
$$

$$
p_{B}(A)=\frac{p(A \cap B)}{p(B)}=\frac{\frac{C_{1}^{1}}{C_{20}^{1}}}{\frac{3}{10}}=\frac{\frac{1}{20}}{\frac{3}{10}}=\frac{1}{6}
$$

$$
p_{A}(B)=\frac{p(A \cap B)}{p(A)}=\frac{\frac{1}{20}}{\frac{4}{5}}=\frac{1}{20} \times \frac{5}{4}=\frac{1}{16}
$$

$$
\mathrm{p}(\overline{\mathbf{A}})=\mathbf{0 , 4}: \text { : } \mathrm{C}(\overline{\mathbf{A}})=\mathbf{1}-\mathrm{p}(\mathbf{A})
$$

$p(\overline{\mathbf{A}} \cap \mathbf{B})=0,4 \times 0,1=0,04: p(\overline{\mathbf{A}} \cap \mathbf{B})=p(\overline{\mathbf{A}}) \mathbf{p}(\mathbf{B})$.
$\mathrm{p}(\overline{\mathrm{A}} \cup \mathrm{B})=0,4+0,1-0,04=0,46$
5) $p(\overline{\mathbf{A}} \cap \overline{\mathbf{B}})=p(\overline{\mathrm{~A}}) \cdot \mathrm{p}(\overline{\mathbf{B}})=0,4 \times 0,9=0,36$
6) $p(\bar{A} \cup \bar{B})=p(\bar{A})+p(\overline{\mathbf{B}})-p(\bar{A} \cap \overline{\mathbf{B}})=0,4+0,9-0,36=0,94$
() 20 : 20 مدر عجنو عة الإمكانيانيات هو

$(X=0)=\{(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)$

$$
(5,1),(5,3),(5,5)\}
$$

$(X=2)=\{(2,2),(1,2),(3,2),(5,2),(2,1)(2,3),(2,5)\}$ $(X=4)=\{(2,4),(4,2),(4,4)(1,4),(4,1),(3,4),(4,1)$

$$
(4,5),(5,4)\}
$$

$$
\begin{gathered}
(4,5),(5,4)\} \\
(X=6)=\{(2,6),(6,2),(4,6),(6,4),(6,6),(1,6),(6,1)
\end{gathered}
$$

$$
(3,6),(6,3),(5,6),(6,5)\}
$$

$$
p(X=0)=\frac{9}{36}, p(X=2)=\frac{7}{36}
$$

$p(X=4)=\frac{9}{36}, p(X=6)=\frac{11}{36}$

X ค.	0	2	4	6
$P(X)$	$\frac{9}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$A=\{\{1,14\},\{2,13\},\{3,12\},\{4,11\},\{5,10\},\{6,9\},\{7,8\}\}$

$B=\{\{1,6\},\{2,7\},\{3,8\},\{4,9\},\{5,10\},\{6,11\}$
$\{7,12\},\{8,13\},\{9,14\},\{10,15\}\}$
p(B) $=\frac{10}{105}=\frac{2}{21}$: $10:$: 10 : 10 : 10 عدن الحالات المالامة
p
$P_{11}(A)=\frac{p(A \cap B)}{p(B)}$
$p(A \cap B)=\frac{1}{105} \quad: \quad$ ومنه $A \cap B=\{\{5,10\}\}:$ ل

$$
p_{B}(A)=\frac{\frac{1}{105}}{\frac{10}{105}}=\frac{1}{105} \times \frac{105}{10}=\frac{1}{10}
$$

$$
p(A)=\frac{1}{15} \quad, \quad p_{B}(A)=\frac{1}{10}: \text { : }: 4
$$

$$
\text {-...- } 19 \text { التمرين }
$$

بما أن A و B حادشثتان هستقلتان فإن :
i) $p(A \cap B)=p(A) \cdot p(B)=0,6 \cdot 0,1=0,06$
2) $p(A \cup B)=p(A)+p(B)-p(A \cap B) \quad: \quad$ ولیينا
$p(A \cup B)=0,6+0,1-0,06=0,64$
$p(\mathbf{A} \cup \overline{\mathbf{B}})=\mathbf{p}(\mathbf{A})+\mathbf{p}(\overline{\mathbf{B}})-\mathbf{p}(\mathbf{A} \cap \overline{\mathbf{B}})$
لادينا:
$p(A \cap \overline{\mathbf{B}})=\mathbf{p}(\mathbf{A}) \cdot p(\overline{\mathbf{B}})=0,6 \times 0,9=0,54:$:
$p(A \cup \bar{B})=0,6+0,9-0,54=0,96$
وعليه:

$$
p_{x}(k)=C_{10}^{k}(0,5)^{k}(0,5)^{10-k}=C_{10}^{k} \cdot(0,5)^{10}
$$

: 3DA حساب إحتمال أن يربح هذا الثلاعب (0) شت

$$
p_{X}(6)=C_{10}^{6}(0,5)^{10}=\frac{10!}{4!\times 6!} \times(0,5)^{10}=0,2:
$$

2 التمثيل البياني لققانون المتنير العشوائي: قيم المتغير العثوا

$$
\begin{aligned}
& \cdot p_{X}(1)=C_{10}^{1}(0,5)^{10} \simeq 0,0097 \\
& p_{X}(0)=C_{10}^{0}(0,5)^{10} \simeq 0,00097
\end{aligned}
$$

$p_{X}(2)=C_{10}^{2}(0,5)^{10} \simeq 0,044 \quad . p_{X}(3)=C_{10}^{3}(0,5)^{10} \simeq 0,117$
$p_{X}(4)=C_{10}^{4}(0,5)^{10} \simeq 0,21 \quad \cdot p_{X}(5)=C_{10}^{5}(0,5)^{10} \simeq 0,25$
$p_{X}(6)=C_{10}^{6}(0,5)^{10} \simeq 0,2 \cdot p_{X}(7)=C_{10}^{7}(0,5)^{10} \simeq 0,117$
$p_{X}(8)=C_{10}^{8}(0,5)^{10} \simeq 0,044 \cdot p_{X}(9)=C_{10}^{9}(0,5)^{10} \simeq 0,0097$
$p_{X}(10)=C_{10}^{10}(0,5)^{10} \simeq 0,00097$

X_{i}	0	1	2	3	4	5	6
$\mathbf{p}_{X}\left(x_{i}\right)$	0,00097	0,0097	0,044	0,117	0,21	0,25	0,2

7	8	9	10
0,117	0,044	0,0097	0,00097

[^0]$E(X)=0 \times \frac{9}{36}+2 \times \frac{7}{36}+4 \times \frac{9}{36}+6 \times \frac{11}{36}=\frac{116}{36}=\frac{29}{9}=3,2$
3- التباين :

الاحتمالات لالإختيار العثشو ائي لحاسوب أنتج في السلاسل

$$
\text { على الترتيب أي : } \frac{10}{100}, \frac{40}{100}, \frac{50}{100}
$$

$$
p\left(C_{1}\right)=0,5, p\left(C_{2}\right)=0,4, p\left(C_{3}\right)=0,1
$$

الاحتمالات الشرطية لان يكون الحاسوب صصالحا لـلاستعمال علما أنه أنتج في أحدى السلاهل

$$
p_{C_{1}}(A)=0,9 \quad, \quad p_{C_{2}}(A)=0,8 \quad, \quad p_{C_{3}}(A)=0,7: \text { حيّ }
$$

وحسب دستور الاحتمالات الكلية :
$p(A)=p_{C_{1}}(A) \cdot p\left(C_{1}\right)+p_{C_{2}}(A) \times p\left(C_{2}\right)+p_{C_{3}}(A) \times p\left(C_{3}\right)$ $p(A)=0,9 \times 0,5+0,8 \times 0,4+0,7 \times 0,1=0,84$

التمرين 22 : -- التحربة ربح فَ حالة سحب الرقم 10 وخسارة ففي حالةة سحب أي رقم آخر فابن

p
$1-\mathrm{p}=1-0,01=0,99:$: احتمال الخسارة
3) وسبيط (المتغيز العشواني X لبرنولي هو 0,01 لبي ويكون ققانونـه كمايلّي

X_{i}	1	0
$\mathbf{p}_{X}\left(x_{i}\right)$	0,01	0,99

$\mathrm{E}(X)=1 \times 0,01+0 \times 0,99=0,01=p$
$\mathrm{V}(X)=\mathrm{p}(1-\mathrm{p})=0,01 \times 0,99=0,0099$
$\sigma(X)=\sqrt{V(X)} \simeq 0.099$

$$
\begin{aligned}
& V(X)=(0)^{2} \times \frac{9}{36}+(2)^{2} \times \frac{7}{36}+(4)^{2} \times \frac{9}{36}+(6)^{2} \times \frac{11}{36}-\left(\frac{29}{9}\right)^{2} \\
& =\frac{28+144+396}{36}-\frac{841}{81}=\frac{437}{81} \simeq 5,4 \\
& \sigma(X)=\sqrt{V(X)} \simeq 2,3 \quad: 4
\end{aligned}
$$

$$
p_{n}=\frac{3}{5} \times\left(\frac{2}{5}\right)^{n-1} \quad p_{n}=\left(\frac{4}{10}\right)^{n-1} \times \frac{3}{5}: \text { ومنه }
$$

2

$$
S_{n}=p_{1} \times \frac{1-q^{n}}{1-q} \quad: q=\frac{2}{5}
$$

$$
S_{n}=\frac{3}{5} \times \frac{1-\left(\frac{2}{5}\right)^{n}}{1-\frac{2}{5}}=\frac{3}{5} \times \frac{1-\left(\frac{2}{5}\right)^{n}}{\frac{3}{5}}=1-\left(\frac{2}{5}\right)^{n}
$$

$$
\lim _{n \rightarrow+\infty} S_{n}=\lim _{n \rightarrow+\infty} 1-\left(\frac{2}{5}\right)^{n}=1
$$

 0,3
 ومنه احتمال أن نحصل على k شُخص من العينة يختّان المنتو ج هو : $k \in\{0,1,2, \ldots, 20\} \sim \sim p_{k}=C_{20}^{k}(0,3)^{k} \cdot(0,7)^{20-k}$ $p_{4}=C_{20}^{4}(0,3)^{4} \cdot(0,7)^{20-4}$: احتمال أن يختار 4 أنخاص هنا المنتو (0, 18 (0) $p_{4}=\frac{20!}{16!4!}(0,3)^{4} \times(0,7)^{16}=\frac{20 \times 19 \times 18 \times 17}{4 \times 3 \times 2 \times 1}(0,3)^{4}(0,7)^{16}$ $p_{4}=5 \times 19 \times 3 \times 7(0,3)^{4}(0,7)^{16} \simeq 0,537$

> p(G)

$$
\begin{aligned}
\mathrm{p}(X=3)=\mathrm{C}_{5}^{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{5-3}= & 10\left(\frac{1}{2}\right)^{5}=\frac{5}{16}: \text { الي انـ احتمال الحصول } 3 \text { ذكور في } 5 \text { ولادات هو }
\end{aligned}
$$

$A_{6}^{4} \times \mathbf{A}_{4}^{1}=1440$: عدد السحبات المالامةة

$$
\begin{aligned}
& p_{1}=\frac{1440}{30240} \simeq 0,048: p_{1}=\frac{A_{6}^{4} \times A_{4}^{1}}{A_{10}^{5}}: \text { الاحتمال } \\
& \mathbf{C}_{4}^{1} \times\left(\mathbf{A}_{4}^{1} \times \mathbf{A}_{6}^{4}\right): \text { عدد الحالات الملانمة هو } \\
& p_{2}=\frac{5760}{30240} \simeq 0,19 \text { ي } p_{2}=\frac{4 \cdot A_{4}^{1} \times A_{6}^{4}}{A_{10}^{5}} \text { الاحتمال } \\
& \text { 2) } \\
& 6^{4} \times 4^{1}=5184 \text { (أ) عدد السحبات الملاهمة : } \\
& p_{3}=\frac{5184}{100000} \simeq 0,052 \text { الاحتمال : } \\
& \text { ب) } \mathrm{C}_{4}^{1} \times 6^{4} \times 4^{1} \text { : عدد الحالات الملاممة هو } \\
& p_{4}=\frac{20736}{100000} \simeq 0,207 \text { الاحتمال : } p_{4}=\frac{4 \cdot 6^{4} \times 4^{1}}{10^{5}}
\end{aligned}
$$

عدد السحبات الممكنة هو 10 عند 10 عحب n n كرة

1) حساب P1 : هناك سحبةٌ واحدة أي نحصل على كرة حمر اء ـ ومنه عدد السحبات الملانمةة هو

$$
p_{1}=\frac{6^{1}}{10^{1}}=\frac{3}{5}: \leq \cdot 6^{1}
$$

حساب P2 : هناك سحبتين و عليه نحصل على كرة خضر أه ثم كرة حمر اءع بهذا الترتيب . و عليا

$$
4^{1 \times 6^{1}: \text { عدد الحالات المـلاممة هو } 4}
$$

$$
p_{2}=\frac{4^{1} \times 6^{1}}{10^{2}}=\frac{24}{100}=\frac{6}{25}:
$$

حساب

$$
\text { الترتيبب.و عليه عدد الحالات الملامْمة هو : } 4^{2} \times 6^{1}
$$

$$
p_{3}=\frac{12}{125} \quad \text { ومنه }: \quad p_{3}=\frac{4^{2} \times 6^{1}}{10^{2}}=\frac{16.6}{10^{3}}
$$

حساب

$$
\text { . } 4^{n-1} \times 6^{1}:
$$

$$
\text { إذن : } \mathbf{e}^{-100 \lambda}=0,95: \mathbf{e}^{-100 \lambda}=0,05 \quad \text { : }
$$ $-100 \lambda=\ln 0,95: \ln \mathrm{e}^{-100 \lambda}=\ln 0,95:$ بأن : $\lambda \simeq 0,0005:$

2) احتمال أن يتث الانشطار في أقلّ من 150 سنة : $\mathrm{p}([0 ; 150])=\int_{0}^{150} 0,0005 \cdot \mathrm{e}^{-0,0005 t} \mathrm{dt}=\left[1-\mathrm{e}^{-0,0005 \times 150}\right] \simeq 0,072$

3- احتمال أن يكون الالشططار علي الآهِل في 150 سنة : فالحادثة أن يكون الانشُطار على الأقلّ في 150 سنة هي الحادثة العنة العكسية للحادثة أن يتم الانشطار في أقل من 150 سنة.

$$
E(X) \simeq 2000 \text { وعليه } \quad \mathbf{E}(X)=\frac{1}{\lambda}=\frac{1}{0,0005} \quad \text { :اينا }
$$

(ذن المدة المتوسطة للاحشطار النووي هي 2000 سنة. . التمرين 30 : $\int_{0}^{x} \lambda t \mathrm{e}^{-\lambda t} \mathrm{dt}$ حساب-1
$\int_{0}^{x} \lambda t \mathrm{e}^{-\lambda t} d t=\left[-t \mathrm{e}^{-\lambda t}\right]_{0}^{x}-\int_{0}^{x}-\mathrm{e}^{-\lambda t} d t=\left[-t \mathrm{e}^{-\lambda t}\right]_{0}^{x}+\int_{0}^{x} \mathrm{e}^{-\lambda t} d t$

$$
=\left[-\mathrm{t} \mathrm{e}^{-\lambda t}\right]_{0}^{x}+\left[-\frac{1}{\lambda} \mathrm{e}^{-\lambda t}\right]_{0}^{x}=\left[\mathrm{e}^{-\lambda t}\left(-\mathrm{t}-\frac{1}{\lambda}\right)\right]_{0}^{x}
$$

$$
\begin{aligned}
& \int_{a}^{b} f^{\prime}(t) \cdot g(\mathrm{t}) \mathrm{dt}=[f(t) \cdot \mathrm{g}(\mathrm{t})]_{a}^{b}-\int_{a}^{b} g(t) \cdot f^{\prime}(\mathrm{t}) \mathrm{dt} \text { :للاینا } \\
& g(t)=\mathrm{t} \quad, \quad f^{\prime}(t)=\lambda t \mathrm{e}^{-\lambda t}: \varepsilon \text { th } \\
& g^{\prime}(t)=1 \quad, \quad f(t)=-e^{-\lambda t}
\end{aligned}
$$

$$
\mathbf{p}_{1}=\mathbf{p}_{2}=\ldots=\frac{1}{\mathbf{p}_{12}}=\frac{1}{12}
$$

2) محاكاة السلسلة هو محاكاة أعداد من المجموعة بيانية أو بمجدول . فنحصل على أعداد عشو انية محصورة بين 1 و 12.

$$
\begin{aligned}
& d^{2}=\sum_{i-1}^{12}\left(f_{i}-p_{i}\right)^{2} \quad: d^{2} \text { حساب } \\
& p_{1}=p_{2}=p_{3}=\ldots=p_{12}=0,083 \quad: \quad \text { لدينا } \\
& f_{1}=\frac{9}{100}=0,09, f_{2}=\frac{10}{100}=0,1, f_{3}=\frac{7,5}{100}=0,075 \\
& f_{4}=\frac{7,5}{100}=0,075, f_{5}=\frac{7}{100}=0,07, f_{6}=\frac{6}{100}=0,06 \\
& f_{7}=\frac{6}{100}=0,06, f_{8}=\frac{5}{100}=0,05, f_{9}=\frac{8}{100}=0,08 \\
& f_{10}=\frac{10,5}{100}=0,105, f_{11}=\frac{10,5}{100}=0,105, f_{12}=\frac{13}{100}=0,13 \\
& d^{2}=(0,09-0,083)^{2}+(0,1-0,083)^{2}+(0,075-0,083)^{2} \\
& +(0,075-0,083)^{2}+(0,07-0,083)^{2}+(0,06-0,083)^{2}+(0,05-0,083)^{2} \\
& +(0,08-0,083)^{2}+(0,105-0,083)^{2}+(0,105-0,083)^{2}+(0,13-0,083)^{2} \\
& \mathrm{~d}^{2}=5968 \cdot 10^{-6} \simeq 0,005968 \\
& \text { 4) نعم النموذج مقبول. أي أن : " الإقبال على السييمما مستقل عن شهر خلال سنة" قاعدة } \\
& D_{9}=0,0072 \text { لا لان } \\
& \text { حيث D9 هو الثقشير التاسع الموضح في التّمثيل بالثعلبة. } \\
& \text { التمرين } 29 \text { : }
\end{aligned}
$$

1) ليكن X المتغنير (العشو انئي المرفق بتجربة مدة النشطار النواة

$$
\begin{aligned}
p([0 ; 100])= & \int_{0}^{100} \lambda e^{-\lambda t} d t: \text { ولدينا }^{\text {و }} \mathrm{S} \mathrm{~s}([0 ; 100])=0,05
\end{aligned}
$$

$$
\int_{a}^{b} f^{\prime}(t) \cdot \mathrm{g}(\mathrm{t}) \mathrm{dt}=[f(t) \cdot \mathrm{g}(\mathrm{t})]_{a}^{b}-\int_{a}^{b} g^{\prime}(t) \cdot f(\mathrm{t}) \mathrm{dt}: \text { لدين }
$$

$$
\int_{0}^{x} \lambda t \mathrm{e}^{-\lambda \mathrm{t}} \mathrm{dt}=\mathrm{e}^{-\lambda x}\left(-x-\frac{1}{\lambda}\right)+\frac{1}{\lambda}=\frac{1}{\lambda}(-\lambda x-1) \mathrm{e}^{-\lambda x}+\frac{1}{\lambda}
$$

$\lim _{x \rightarrow+\infty} \int_{0}^{x} \lambda t \mathrm{e}^{-\lambda t} \mathrm{dt}=\lim _{x \rightarrow \infty} \frac{1}{\lambda}(-\lambda x-1) \mathrm{e}^{-\lambda x}+\frac{1}{\lambda} \lim _{x \rightarrow \infty} \frac{1}{\lambda}\left(-\lambda x \cdot \mathrm{e}^{-\lambda}-\mathrm{e}^{-\lambda x}\right)+\frac{1}{\lambda}=\frac{1}{\lambda}$

$$
f(t)=\lambda \mathrm{e}^{-\lambda t} \quad: f \text { : استنتاج }
$$

: الدالةf مستمرة على [

$$
\lim _{x \rightarrow+\infty} \int_{0}^{x} f(\mathrm{t}) \mathrm{dt}=\lim _{x \rightarrow+\infty}\left[1-\mathrm{e}^{-\lambda \mathrm{t}}\right]=1: \text { ولاينا }
$$

وعليه الالة f هي دالة كثانة الاحتمال

$$
\begin{array}{r}
\int_{a}^{b} f^{\prime}(t) \cdot g(t) \mathrm{dt}=[f(t) \cdot \mathrm{g}(\mathrm{t})]_{a}^{b}-\int_{a}^{b} g^{\prime}(t) \cdot f(\mathrm{t}) \mathrm{dt}: \text { بوند }: ~
\end{array}
$$

$$
\int_{0}^{1} \lambda t^{2} \mathrm{e}^{-\lambda t} d t=\left[-t^{2} \mathrm{e}^{-\lambda t}\right]_{0}^{y}-\int_{0}^{y}-2 t \mathrm{e}^{-\lambda t} d t=-y^{2} \mathrm{e}^{-\lambda y}+2 \int_{0}^{y} t \mathrm{e}^{-\lambda t} d t \quad: \quad: \dot{u}
$$

$$
\int_{0}^{y} t \mathrm{e}^{-\lambda t} \mathrm{dt} \text { :حساب التكامل }
$$

$$
\begin{aligned}
& E(X)=\lim _{x \rightarrow+\infty} \int_{0}^{x} f(t) \mathrm{dt}=\frac{1}{\lambda}: \text { : ومنه } \\
& \int_{0}^{x} \lambda t^{2} e^{-\lambda t} d t \text { سصاب }
\end{aligned}
$$

$$
\mathbf{Z} \times \mathbf{Z}^{\prime}=\left(x x^{\prime}-y y^{\prime}\right)+\mathbf{i}\left(x y^{\prime}+x^{\prime} \mathbf{y}\right)
$$

هاتين العقليتين لهما نفس خواص الجمع + و الضضرب \times ف في

$$
i^{2}=(0+1 . i) \times(0+1 . i): \text { حقيقي ولدينا }
$$

$$
: i^{2}=-1 \text { وعنه } i^{2}=(0-1)+i(0.1+0.1)=-1
$$

خواص :

- مقلّوب عدد مركب :
Z=x+iy عدد مركب غير معدوم . حيث Z

$$
\frac{1}{Z}=\frac{1}{x+i y}=\frac{(x-i y)}{(x+i y)(x-i y)}=\frac{x-i y}{x^{2}+y^{2}}: \text { : }
$$

Z Z $\frac{1}{\mathrm{Z}}=\frac{x}{x^{2}+\mathrm{y}^{2}}-\mathrm{i} \frac{\mathrm{y}}{x^{2}+\mathrm{y}^{2}}$: الشكل الجبري لمقالوب العدد المركم
" هاصل قسمة عددين مركبين :

$$
\mathbf{Z}^{\prime}=x^{\prime}+\mathbf{i y} y^{\prime}, ~ Z=x+\text { iy } \mathbf{Z}^{\prime} \neq 0 \text { عددان هركبان حيث: Z } 0 \text {, }
$$

$$
\frac{\mathbf{Z}}{\mathbf{Z}^{\prime}}=\mathbf{Z} \times \frac{1}{\mathbf{Z}^{\prime}}=(x+\mathrm{iy}) \times\left(\frac{x^{\prime}}{x^{\prime 2}+\mathbf{y}^{\prime 2}}-\mathbf{i} \frac{y^{\prime}}{x^{\prime 2}+\mathrm{y}^{\prime 2}}\right)
$$

11 - الأعداد المركبة

1

($\mathrm{O} ; \overrightarrow{\mathbf{i}}, \overrightarrow{\mathrm{j}}$)

- كل نقطة M من المستوي تمثل عدد مركب وعدد مركب وحيد. وكل عدلد مركب يمثل بنقظة
 M (x;y) من أجل كل عددان حقيقيان x X -

2- الشثكل الجبر ي لعدد مركب :

3- تعار يف و مصنطحات :
ليكن $\mathrm{Z}=x+\mathrm{i}=\mathrm{c}$

$$
\operatorname{Re}(Z)=x: \text { أي Re(Z) }
$$

- العدد الحقيقي ل يسمى الجزء أو اللقسم التخيلي للعدد المركب Z ويرمز له بالرمز

$$
\operatorname{Im}(\mathbb{Z})=y \quad \text { أي } \operatorname{Im}(\mathbb{Z})
$$

$$
y=y^{\prime} \quad \text { و } x=x^{\prime}: x^{\prime}+\mathrm{iy}^{\prime}
$$

$\operatorname{Im}(\mathbb{Z})=0$:يكافئ: $\mathbb{Z} \in \mathbb{R}$: كل عدد حقيقي هو عدد مركب و لاينا -
Re(Z)=0 يكون العدد المركب Z تخيلي صرف إلا وفقط إذا كان -

- محور الفو اصل يدعى المحور الحققيقي و محور اللتر اتتيب يدعىالمحوز التخيلي .

4- الحساب في C
- المجموع و الجداء ڤفي \mathbb{C} : المجموعة \mathbb{C} (مزودةٌ بعمليتين هما الجمع + + و الضرب

Z Z يسمى الشكل المثلثي للعدل $\rho(\cos \theta+i \sin \theta)$ •
 - الز اوية القطبية)
 بترديد 2π

$$
|\mathbf{Z}|=\|\overrightarrow{\mathbf{O M}}\|=\rho: \quad \text { لاينا : } \quad\|\overrightarrow{\mathbf{O M}}\|=\sqrt{x^{2}+y^{2}}
$$

$$
\left\{\begin{array}{l}
\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}} \\
\sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}
\end{array}\right.
$$

وعليه :

وإذا كان Z=0 فإن : Z C : ليس لـه عمدة.
: خواص
. Z (A
$\arg (Z)=0+2 k \pi ; k \in \mathbb{Z}:$ حقيقي موجب يكافئى Z (1 $\arg (\mathbb{Z})=\pi+2 k \pi ; k \in \mathbb{Z}:$ حقيقي سالب يكافئ Z (2 $\arg (\mathbb{Z})=\frac{\pi}{2}+2 k \pi ; k \in \mathbb{Z} \quad$ يكافئ $\operatorname{Re}(\mathbb{Z})=0 \quad$, $\operatorname{Im}(\mathbb{Z})>0$ $\arg (\mathbb{Z})=-\frac{\pi}{2}+2 k \pi ; k \in \mathbb{Z}:$ يكافئ $\operatorname{Re}(\mathbb{Z})=0, \operatorname{Im}(\mathbb{Z})<0$ (B
 , $|\overline{\mathbf{Z}}|=|\mathbf{Z}|$: $\arg (\overline{\mathbb{Z}})=-\arg (\mathbb{Z})+2 k \pi ; k \in \mathbb{Z}$: جداء عددان مركبان (C عداء $\overline{\text { Z }}$, Z $\mathbf{Z}^{\prime}=\rho^{\prime}\left(\cos \theta^{\prime}+\mathbf{i} \sin \theta^{\prime}\right), \mathbf{Z}=\rho(\cos \theta+i \sin \theta)$

$$
=\frac{x x^{\prime}}{x^{\prime 2}+y^{\prime 2}}-\mathrm{i} \frac{x y^{\prime}}{x^{\prime 2}+\mathrm{y}^{\prime 2}}+\mathrm{i} \frac{x^{\prime} y}{x^{\prime 2}+\mathrm{y}^{\prime 2}}+\frac{\mathrm{yy}^{\prime}}{x^{\prime 2}+\mathrm{y}^{\prime 2}}
$$

$\frac{\mathbf{Z}}{\mathbf{Z}^{\prime}}$ ومنـه : $\frac{\mathbf{Z}}{\mathbf{Z}^{\prime}}=\frac{x x^{\prime}+y^{\prime}}{x^{\prime 2}+y^{\prime 2}}+\mathbf{i} \frac{x^{\prime} y-x y^{\prime}}{x^{\prime 2}+y^{\prime 2}}$
5- مر افق عدد هركب :

 بالنسبة لمحور الفواصل هي النقطة x-iy العدي

خو اص :

$Z \cdot \bar{Z}=x^{2}+y^{2}(4 \quad Z-\overline{\mathbf{Z}}=2 \operatorname{Im}(\mathbb{Z}):$ g $Z-\bar{Z}=2$ i y (3

$$
\mathbf{Z}=-\overline{\mathbf{Z}}: \text { تخيلي صرف يكافئ } \mathbf{Z}(6 \quad \mathbf{Z}=\overline{\mathbf{Z}} \text { نكافئ } \mathbf{Z} \in \mathbb{R}
$$

$$
\text { أعداد حقيقية } y^{\prime}, y, x^{\prime}, x \text { (b }
$$

$$
\overline{\mathbf{Z}_{1} \cdot \mathbf{Z}_{2}}=\overline{\mathbf{Z}}_{1} \cdot \overline{\mathbf{Z}}_{2}
$$

$$
\mathbf{Z}_{2}=x^{\prime}+\mathbf{i} y^{\prime} \quad ; \quad \mathbf{Z}_{1}=x+i y
$$

$$
\overline{\mathbf{Z}_{1}+\mathbf{Z}_{2}}=\overline{\mathbf{Z}}_{1}+\overline{\mathbf{Z}}_{2}
$$

$=\overline{\left(\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{2}}\right)}=\frac{\overline{\mathbf{Z}}_{1}}{\overline{\mathbf{Z}}_{2}}\left(4 \quad \overline{\left(\frac{1}{\mathbf{Z}_{1}}\right)}=\frac{1}{\mathbf{Z}_{1}}\right.$

$$
\overline{\mathbb{Z}_{1}^{n}}=\left(\overline{\mathbb{Z}_{1}}\right)^{n} \quad: \mathbf{n} \in \mathbb{N}^{*} \text { (5 }
$$

$$
\overline{\mathbf{Z}_{1}^{n}}=\left(\overline{\mathbf{Z}_{1}}\right)^{n}: \mathbf{n} \in \mathbb{N}, \mathbb{Z}_{1} \neq 0 \quad 0: \text { وإنا }
$$

6- طويلة و عمدة عدد مركب :

 $\rho(\cos \theta+i \sin \theta)$

$$
(\overrightarrow{\mathbf{u}}, \overrightarrow{\mathrm{v}})=\arg \left(\frac{\mathbf{Z}^{\prime}}{\mathrm{Z}}\right)[2 \pi]
$$

7- الثشكل الأسي لعدد مركب (تزميز أولير)

- التّتريف :
$\cos \theta+i \sin \theta=\mathrm{e}^{\mathrm{i} \theta} \quad$ نضع اصطلاحا من أجل كل عدد حقيقي

$$
Z_{2}=\rho_{2} e^{i \theta_{2}} \quad, Z_{2}=\rho_{1} e^{i \theta_{1}}: \text { عددان مركبان حيث Z Z }, Z_{1} \text { ليكن }
$$

1) $Z_{1} \cdot Z_{2}=\rho_{1} \cdot \rho_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}$
2) $\frac{1}{Z_{1}}=\frac{1}{\rho_{1}} \cdot e^{-i \theta_{1}}$
3) $\frac{Z_{1}}{Z_{2}}=\frac{\rho_{1}}{\rho_{2}} \cdot e^{i\left(\theta_{1}-\theta_{2}\right)}$
4) $\mathbb{Z}_{1}^{n}=\rho_{1}^{n} \cdot e^{i n \theta}$.
5) $\bar{Z}_{1}=\rho_{1} \cdot e^{-i \theta_{1}}$

هلاحظة :
: لدينا :

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \theta} \cdot \mathrm{e}^{\mathrm{i} \theta^{\prime}}=\mathrm{e}^{\mathrm{i}\left(\theta+\theta^{\prime}\right)}=\cos \left(\theta+\theta^{\prime}\right)+\mathrm{i} \sin \left(\theta+\theta^{\prime}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \theta} \cdot \mathrm{e}^{2 \theta^{\prime}}=(\cos \theta+\mathrm{i} \sin \theta)\left(\cos \theta^{\prime}+\mathrm{i} \sin \theta^{\prime}\right) \tag{2}
\end{equation*}
$$

$=\cos \theta \cdot \cos \theta^{\prime}-\sin \theta \cdot \sin \theta^{\prime}+\mathrm{i}\left(\cos \theta \cdot \sin \theta^{\prime}+\sin \theta \cdot \cos \theta^{\prime}\right)$
, $\sin \left(\theta+\theta^{\prime}\right)=\cos \theta \cdot \sin \theta^{\prime}+\sin \theta \cdot \cos \theta^{\prime}$
(2) ; (1)
$\cos \left(\theta+\theta^{\prime}\right)=\cos \theta \cdot \cos \theta^{\prime}-\sin \theta \cdot \sin \theta^{\prime}$

$$
\left\|\mathbf{Z}-\mathbf{Z}_{0}\right\|=\mathbf{k}
$$

$$
\text { Z }=\mathbf{Z}_{0}+k \cdot e^{i \theta} \text { التُبير عن نصف مستقّقم بالعلاقةل }
$$

$\left|\mathbf{Z} \cdot \mathbf{Z}^{\prime}\right|=|\mathbf{Z}| \cdot\left|\mathbf{Z}^{\prime}\right|:$:لن $\cdot \mathbf{Z} \mathbf{Z}^{\prime}=\rho \rho^{\prime}\left[\cos \left(\theta+\theta^{\prime}\right)+i \sin \left(\theta+\theta^{\prime}\right)\right]$ $\arg \left(\mathbf{Z} \cdot \mathbf{Z}^{\prime}\right)=\arg (\mathbb{Z})+\arg \left(\mathbf{Z}^{\prime}\right)+2 k \pi ; k \in \mathbb{Z}$
: مقلوب عدد مركب غير معدوم (D Z $\mathrm{Z}=\rho(\cos \theta+i \sin \theta)$: $\frac{1}{Z}=\frac{1}{\rho}[\cos (-\theta)+i \sin (-\theta)]:$ إنن
$\left|\frac{1}{\mathbf{Z}}\right|=\frac{1}{|\mathbf{Z}|}, \arg \left(\frac{1}{\mathbf{Z}}\right)=-\arg (\mathbf{Z})+2 \mathrm{k} \pi$: وعليه
(E $Z^{\prime} \neq 0$ عددان مركبان حيث Z \mathbf{Z}^{\prime} و Z
$\arg \left(\frac{\mathbf{Z}}{\mathbf{Z}^{\prime}}\right)=\arg (\mathbf{Z})-\arg \left(\mathbf{Z}^{\prime}\right),\left|\frac{\mathbf{Z}}{\mathbf{Z}^{\prime}}\right|=\frac{|\mathbf{Z}|}{\left|\mathbf{Z}^{\prime}\right|}$
(F
: عددان مركبان غير معدومين حيث Z Z Z

$$
\mathbf{Z}^{\prime}=\rho^{\prime}\left(\cos \theta^{\prime}+\mathbf{i} \sin \theta^{\prime}\right), \mathbf{Z}=\rho(\cos \theta+i \sin \theta)
$$

$$
\theta=\theta^{\prime}+2 \mathbf{k} \pi ; \mathbf{k} \in \mathbb{Z}, ~ \rho=\rho^{\prime}: \mathbf{~} \mathbf{Z}=\mathbf{Z}^{\prime}
$$

$$
\text { : Z } \mathbf{Z}^{n} \text { طويلة و عمدة) (G }
$$

Z عدد مركب غير معلوم ، n عدد صحيح.

$$
\arg \left(\mathbf{Z}^{\mathrm{n}}\right)=\mathbf{n} \cdot \arg (\mathbf{Z}) \quad, \quad\left|\mathbf{Z}^{\mathrm{n}}\right|=|\mathbf{Z}|^{n} \text { •لدينا } \bullet
$$

نتيجة :
$\theta \in \mathbb{R} ; n \in \mathbb{Z}$ من أجل $(\cos \theta+i \sin \theta)^{n}=\cos \theta+i \sin \theta$

على الترتّتبّ فإن :
$\left|\frac{Z_{C}-Z_{A}}{Z_{B}-Z_{A}}\right|=\frac{A C}{A B} \quad \arg \left(\frac{Z_{C}-Z_{A}}{Z_{B}-Z_{A}}\right)=(\overrightarrow{\mathbf{A B}}, \overrightarrow{\mathbf{A C}})[2 \pi]$
II) زذا كان

$$
\overrightarrow{\mathbf{B C}}, \overrightarrow{\mathbf{A C}}, \overrightarrow{\mathbf{A B}} \text { عين لواحق الاشثعة }
$$ 2) عين لاحقة النقطة D حتى يكون ABCD متو از ي اضضلاع . شم عين لاحقة مركزه.

k
 $x \in \mathbb{R}$ Z $\mathrm{Z}=1-x+2\left(1-x^{2}\right) \mathrm{i}$: حيث Z : نتبر العدد المركب عين قيم العدد الحقيقي x في كل حالة ممايلي إن أمكن.

$$
\begin{array}{rrr}
\operatorname{Re}(\mathbb{Z})=4(3 & \mathbf{Z}=-\overline{\mathbf{Z}}(2 & \mathrm{Z} \in \mathbb{R}(1 \\
\mathbf{Z}=1+\mathbf{i}(6 & \mathbf{Z}=0(5 & \operatorname{Im}(\mathbb{Z})=2(4)
\end{array}
$$

$Z_{1}=2-2 i, Z_{2}=-3+3 i \sqrt{3}, Z_{3}=4 \sqrt{3}$新 1) أكتب كل من الأعداد المركبة الآتية على الشكّل المثلثئ $\mathbf{Z}_{3}^{4}, \frac{\mathbf{Z}_{2}^{2}}{\mathbf{Z}_{1} \cdot \mathbf{Z}_{3}}, \mathbf{Z}_{1} \times \mathbf{Z}_{2} \times \mathbf{Z}_{3}, \frac{\mathbf{Z}_{1}}{\mathbf{Z}_{2}}, \mathbf{Z}_{2}^{2}, \mathbf{Z}_{1}, \mathbf{Z}_{2}, \mathbf{Z}_{3}, \mathbf{Z}_{2}, \mathbf{Z}_{1}$

$$
\frac{2 Z_{1} \times Z_{2}}{i Z_{3}} \text { : احسب مر افقق الععد المركب }
$$

$$
\begin{aligned}
& Z_{3}=\sqrt{2} \cdot e^{-i \frac{\pi}{4}} ; Z_{2}=3 e^{i \frac{3 \pi}{4}} ; Z_{1}=4 e^{i \frac{\pi}{2}} \\
& \mathbf{Z}_{1} . \mathbf{Z}_{2} ; \mathbf{Z}_{1} \times \mathbf{Z}_{2} \times \mathbf{Z}_{3} ; \frac{\mathbf{Z}_{1}^{2}}{\mathbf{Z}_{2}} ; \frac{\mathbf{Z}_{1}^{n}}{\mathbf{Z}_{1}^{\prime}}
\end{aligned}
$$

: 7 ن
$\cos \theta-\mathrm{i} \sin \theta=\mathrm{e}^{\mathrm{i} \theta} \quad, \cos \theta+\mathrm{i} \sin \theta=\mathrm{e}^{\mathrm{i} \theta}: \cos$ ن sin θ g $\cos \theta$ على الشكل الأسي.

प) ()
\square 8) إذا كانت عمدة Z هي $\frac{-\pi}{4}$

$\square \quad \frac{\pi}{6}$ (10) طويلة العدد المركب : $2-2 \sqrt{2}$ وعمدته $\pi+\frac{\pi}{3}$ (11) طويلة العدد المركب : $\mathbf{Z}=-\overline{\mathbf{Z}}$ و $\mathbf{Z}=\overline{\mathbf{Z}}$ إذا كان $\mathbf{Z} \neq 0$ فان $\frac{\mathbf{Z}}{\bar{Z}+1}$ (13) مر افق العدد المركب : $\frac{Z}{\bar{Z}-i}$ (14) مر افق العدد المركب : $\frac{4 \bar{Z}}{\bar{Z}-2}$ (15) مرافق الععد المركب : $\frac{1}{Z}=\bar{z}$ مساوية إلى 1 إذا وفقط إذا كان Z Z Z تكون طويل العدد المركب 17) مجموعة النقط M ذات اللاحقة Z بحيث 1
B(3;0) حيث A(1;1) و

$$
\arg \left(\frac{\mathbf{Z}_{B}-\mathbf{Z}_{A}}{\mathbf{Z}_{C}-\mathbf{Z}_{A}}\right)=\frac{\pi}{3}:(\overrightarrow{\mathbf{A C}}, \overrightarrow{\mathbf{A B}})=\frac{\pi}{3}: \text { : 18 }
$$

$\arg \left(\frac{Z_{B}-Z_{A}}{Z_{C}-Z_{A}}\right)=\frac{\pi}{3}+2 k \pi:$ فأن $(\overrightarrow{\mathbf{A B}}, \overrightarrow{\mathbf{A C}})=\frac{\pi}{3}:$: إذا كاتت
 21) كل معادلة من الارجة الثاثية و بمعاملات حقيقية تقبل حلين متر الفقين.

(3
التمرين 14 :
 $\mathrm{Z}^{2}+6 \mathrm{Z}+25=0$

الil 15 : 15 :
صين الطبيعة و اللعناصر المميزة للتحويل النقطي f الذي يرفقّ بكل نقطة M لاحقتها Z النقطة : بحيث \mathbf{Z}^{\prime} ذات اللاحقة \mathbf{M}^{\prime}

1) $Z^{\prime}-1-2 i=Z$
2) $Z^{\prime}=(1+\sqrt{2}) Z-4 i+4 \sqrt{2}$
3) $Z^{\prime}+\sqrt{2}-i=\frac{\sqrt{2}}{2}(1-i) Z$
التّمرين 16 :
 بير عن
 $\Omega(3 ;-1)$
 الكّرين 17 :
4استعمال الثيكل الأسي :
($\mathbf{Z}_{1}=(-\sqrt{3}+i)^{2007}$ و اكتبه على الششكل الجبري

$$
Z_{2}=\frac{i}{2-2 i \sqrt{3}}: \text { :حسب العدد }-2
$$

, اكهتيه علي الثشكل الجبري .
$Z_{A}=1+i ; Z_{B}=3+i ; Z_{C}=1+3 i$: ثلالث نقط لو احقها على الترتيب A, B, C ال الحسب طويلة العدد المركب : ABC : 19 :

ثم استنتج $\sin 4 \theta$ و $\cos 4 \theta$ بدلالة $\cos \theta$ و
 3) الثّتمرين 10 : نعتّر المعادلة : $Z^{2}-[\sqrt{3}+1+2 i] Z+\sqrt{3}-1+i(\sqrt{3}+1)=0 \ldots$ (1) في مجموعة الأعداد المركبة. . $(\sqrt{3}-1)^{2}$: أحسب

 4- استتنج طويلة و عمدة - $\left(\frac{\mathbf{Z}_{1} \times \mathbf{Z}_{2}}{2 \sqrt{2}}\right)^{n} \in \mathbb{R}_{+}$: عين قيم العدد الطبيعي n بحيث $C=\frac{a+b}{1+a b}, b=\frac{Z_{2}}{\sqrt{2}}, \quad a=\frac{Z_{1}}{2} \quad$ نضـ ـتحقق أن :

$$
\text { نعتبر العدد المركب : } 11 \text { : } \mathbf{~ ا ل ن ت م ر ي ن ~}
$$

1- أحسب |Z Im $\left[\left(\frac{Z}{\sqrt{2}}\right)^{n}\right]=0$: بحيث n n

$$
\begin{aligned}
& \text { حل في } 13 \text { المعادلة : } 12 \text { : } 12 \\
& \text { p(Z) }=4 Z^{3}-6 i \sqrt{3} Z^{2}-3(3+i \sqrt{3}) Z-4 \quad: 13: 13 \text { : نتبر العبارة }
\end{aligned}
$$

1) بين أن p(Z) يقبل جذرا حقيقيا α يطلب تويينه
$2 \mathrm{Z}+3 \overline{\mathrm{Z}}-2 \mathrm{i}-10=0$: دل في \mathbb{C} المعادلة نفرض

التّمرين 25 : 25 عنطى المعادلة :

 (يطّب فقط إعطاء علاقة بين a a b)

J9 1							
\checkmark	(4	\times	(3	\checkmark	(2)	\checkmark	(1)
\times	(8)	\checkmark	(7	\times	(6)	$\sqrt{ }$	(5
\checkmark	(12	\checkmark	(11	\times	(10	\checkmark	(9)
\checkmark	(16	\checkmark	(15	$\sqrt{ }$	(14	\times	(13)
\checkmark	(20)	\times		$\sqrt{ }$	(18	1	(1)
				\times	(22	\times	

ان انمرين لو احق الأشعة :

$$
\text { 3-2i : الي } \mathbf{Z}_{\mathrm{c}}-\mathbf{Z}_{\mathrm{A}} \text { هي } \overrightarrow{\mathrm{AC}} \text { dant }
$$

$$
2-\mathbf{i}: \mathbf{Z}_{\mathrm{C}}-\mathrm{Z}_{\mathrm{B}} \text { ه } \overrightarrow{\mathbf{B C}} \overrightarrow{\mathrm{B}} \text { дày }
$$: D D

$$
\text { Z } \mathbf{Z}=x+\mathrm{iy}, \mathbf{Z}^{\prime}=x^{\prime}+\mathrm{iy} y^{\prime}:
$$

1) أحسب (

$$
\left|\mathbf{Z}^{\prime}\right|=1
$$

نعتبر العدد ألمركب : نفرض الثنطة M لاحقة Z Z باستعمال خو اص المر افق و دون استعمال الشكل الجبري عين

$$
\text { التمرين } 21 \text { : }
$$

$Z_{1} \cdot Z_{2} \cdot Z_{3}=-8$: ليكن عمد الأعداد متتالية هندسية أساسها

$$
\text { احصب Z Z } 2, Z_{2}, Z_{1}
$$

نعتبر النقط C, B , A التّي لؤو احقها على التّرتّيب c, b , a حيث :

$$
c=2-2 i ; b=2 i ; a=3+i
$$

1- أحسب
إعطاء عناصره المميزة

Z-1-3i
أ) أحسب لاحقة النقطة D صورة B بو اسطة f ب) ماهي طبيعة الرياعي ABC . f.
 Z عين حسب قيّم α الشككل المثلثي للعدد المركب $0 ; 2 \pi[$
$\operatorname{Im}(Z)=1, \operatorname{Re}(Z)=1$ R $\mathrm{Z}=1+\mathbf{i}(6$ وبالتالي : $:$ ومن 1- كتابة الأعداد المركبة المعطاة على الشكل المثلثي :

$$
\left\{\begin{array}{l}
\cos \theta_{1}=\frac{\sqrt{2}}{2} \\
\sin \theta_{1}=-\frac{\sqrt{2}}{2}
\end{array}: \quad:\left|Z_{1}\right|=2 \sqrt{2}: L\right.
$$

$$
\arg \left(\mathbb{Z}_{1}\right)=-\frac{\pi}{4}: \text { ي }^{\theta_{1}=\frac{-\pi}{4}+2 k \pi} \begin{array}{r}
k \in \mathbb{Z}
\end{array}
$$

$$
\mathbf{k} \in \mathbb{Z}
$$

$$
\text {) } \theta_{2}=\frac{2 \pi}{3}+2 k \pi \in \mathbb{k} \in \mathbb{Z}\left\{\begin{array}{l}
\cos \theta_{2}=\frac{-1}{2} \\
\sin \theta_{2}=\frac{\sqrt{3}}{2}
\end{array}:\left|\mathbf{Z}_{2}\right|=6\right.
$$

$$
\arg \left(Z_{2}\right)=\frac{2 \pi}{3}
$$

$\arg \left(\mathrm{Z}_{3}\right)=$

$$
\begin{aligned}
& \mathrm{Z}_{1}=2 \sqrt{2}\left[\cos \left(\frac{-\pi}{4}\right)+\mathrm{i} \sin \left(\frac{\pi}{4}\right)\right] \\
& \mathrm{Z}_{2}=6\left[\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right] \quad . \mathrm{Z}_{3}=8\left[\cos \frac{7 \pi}{6}+\mathrm{i} \sin \frac{7 \pi}{6}\right]
\end{aligned}
$$

$$
\begin{array}{r}
Z_{t}=\frac{Z_{A}+Z_{B}+Z_{C}+Z_{D}}{4}=\frac{2 i+1-i+3+2+i}{4} \\
Z_{1}=\frac{3}{2}+\frac{1}{2} i: \text { g } \quad Z_{1}=\frac{6}{4}+\frac{2 i}{4}: ه ن ه
\end{array}
$$

$$
\text { 1) تعيين (} \mathbf{Z} \text {) : } \mathbf{~ : ~ ن ف ر ض ~}
$$

$$
k \in \mathbb{R}_{+}: \quad \text { حيث } \mathbb{Z}=k^{i \frac{\pi}{2}} \quad \mathbf{Z}=\mathbf{k}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right):
$$

$$
\text { 2) تعيين } \mathbf{Z}=k(1+\sqrt{3} i) \text { : }
$$

$$
\text { ومنهه : } \mathrm{Z}=2 k \mathrm{e}^{\mathrm{i} \frac{\pi}{3}} \text { وعليه} \mathbf{Z}=k \cdot 2 \cdot\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{3}\right)
$$

ومنه (E2) دائرة مركزها O ونصف قطر ها 2k.
\qquad

$$
\text { وبالتالي : } x=-1 \text { أو } x=1
$$

$$
x=1 \text { Re (Z)=0 وبالتّلي : } 1 \text { - } 1 \text { ومنه } Z=0=\bar{Z}(2
$$

$$
x=-3 \text { معناه : } \operatorname{Re}(\mathbb{Z})=4 \text { (3 } 1-x=4
$$

$$
\text { 1- } x^{2}=1 \text { : } 2\left(1-x^{2}\right)=2: \text { : } \operatorname{\text {ومنا}~} \operatorname{Im}(\mathbb{Z})=2(4
$$

وعليه:

$$
\operatorname{Im}(Z)=0 \operatorname{Re}(Z)=0: \text { : } \mathbf{Z} \text { : }
$$

$$
\begin{aligned}
\begin{cases}x=0 \\
g \\
(1-x))(1+x)=0\end{cases} & : \begin{array}{l}
1-x=0 \\
2\left(1-x^{2}\right)=0
\end{array}: \text { ومنه }
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{2 Z_{1} \cdot Z_{2}}{i Z_{3}}\right) & =\frac{2 \overline{Z_{1}} \cdot \overline{Z_{2}}}{\bar{i} \cdot \overline{Z_{3}}}=\frac{2 \overline{Z_{1}} \cdot \overline{Z_{2}}}{\overline{-i} \overline{Z_{3}}}=\frac{2(2+2 i)(-3-3 i \sqrt{3})}{-i(-4 \sqrt{3}+4 i)} \\
& =\frac{12(-1+\sqrt{3}-i(1+\sqrt{3}))}{4+4 i \sqrt{3}} \\
& =\frac{3[-1+\sqrt{3}-i(1+\sqrt{3})]}{1+i \sqrt{3}} \times \frac{1-i \sqrt{3}}{1-i \sqrt{3}} \\
& =\frac{3[(-1+\sqrt{3})(1-i \sqrt{3})-i(1+\sqrt{3})(1-i \sqrt{3})]}{4} \\
& =\frac{3[-1+i \sqrt{3}+\sqrt{3}-3 i-i-\sqrt{3}-i \sqrt{3}-3]}{4} \\
& =\frac{3(-4-4 i)}{4}=-3-3 i
\end{aligned}
$$

$Z_{1} \cdot Z_{2}=12 \mathrm{e}^{i\left(\frac{\pi}{2}-\frac{3 \pi}{4}\right)}=12 \mathrm{e}^{i \frac{5 \pi}{4}}:$:

$$
Z_{1} \cdot Z_{2} \cdot Z_{3}=12 \mathrm{e}^{i \frac{5 \pi}{4}} \cdot \sqrt{2} \mathrm{e}^{-i \frac{\pi}{4}}=12 \sqrt{2} \mathrm{e}^{\mathrm{i}\left(\frac{5 \pi \pi}{4} \frac{\pi}{4}\right)}=12 \sqrt{2} \mathrm{e}^{i \pi}
$$

$$
\frac{Z_{2}^{2}}{Z_{1}}=\frac{\left(4 \cdot \mathrm{e}^{i \frac{\pi}{2}}\right)^{2}}{3 \mathrm{e}^{\mathrm{i} \frac{3 \pi}{4}}}=\frac{16 \mathrm{e}^{i \pi}}{3 \mathrm{e}^{\mathrm{e}^{\frac{3 \pi}{4}}}=\frac{16}{3} \cdot \mathrm{e}^{i\left(\pi-\frac{3 \pi}{4}\right)}=\frac{16}{3} \mathrm{e}^{i \mathrm{e}^{i \cdot \frac{\pi}{4}}}{ }^{\frac{\pi}{4}}}
$$

$$
\frac{Z_{3}^{5}}{Z_{2}^{4}}=\frac{\left(\sqrt{2} \cdot e^{-\frac{\pi}{2}}\right)^{5}}{\left(e^{\frac{3 \pi}{4}}\right)^{4}}=\frac{4 \sqrt{2} e^{-1 \frac{5 \pi}{4}}}{81 e^{i, 3 n}}=\frac{4 \sqrt{2}}{81} \cdot e^{-\frac{\pi 5}{4}-i \cdot 3 \pi}=\frac{4 \sqrt{2}}{81} \cdot e^{4}
$$

$$
\mathrm{Z}_{1} \mathrm{Z}_{2}=12 \sqrt{2}\left[\cos \frac{5 \pi}{12}+\mathrm{i} \sin \frac{5 \pi}{12}\right]
$$

$$
\arg \left(\mathbb{Z}_{2}^{2}\right)=2 \arg \left(Z_{2}\right)=\frac{4 \pi}{3} \quad, \quad\left|Z_{2}^{2}\right|=(6)^{2}=36
$$

$$
Z_{2}^{2}=36\left[\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right]
$$

إذن :

$$
\arg \left(\frac{Z_{1}}{Z_{2}}\right)=\frac{-\pi}{4}-\frac{2 \pi}{3}=\frac{-11 \pi}{12},\left|\frac{Z_{1}}{Z_{2}}\right|=\frac{2 \sqrt{2}}{6}=\frac{\sqrt{2}}{3}
$$

$$
\frac{Z_{1}}{Z_{2}}=\frac{\sqrt{2}}{3}\left[\cos \left(\frac{-11 \pi}{12}\right)+\mathrm{i} \sin \left(\frac{-11 \pi}{12}\right)\right]: \text { ومنه }
$$

$$
\left|Z_{1} \cdot Z_{2} \cdot Z_{3}\right|=2 \sqrt{2} \cdot 6 \cdot 8=96 \sqrt{2}
$$

$$
\arg \left(Z_{1} \cdot Z_{2} \cdot Z_{3}\right)=\frac{-\pi}{4}+\frac{2 \pi}{3}+\frac{7 \pi}{6}=\frac{19 \pi}{12}
$$

$$
Z_{1} \cdot Z_{2} \cdot Z_{3}=96 \sqrt{2}\left[\cos \frac{19 \pi}{12}+i \sin \frac{19 \pi}{12}\right] \quad: \quad: \quad \text { : }
$$

$$
\left|\frac{Z_{2}^{2}}{Z_{1} \cdot Z_{3}}\right|=\frac{\left|Z_{2}^{2}\right|}{\left|Z_{1} \cdot Z_{3}\right|}=\frac{36}{2 \sqrt{2} \cdot 8}=\frac{9}{4 \sqrt{2}}=\frac{9 \sqrt{2}}{8}
$$

$$
\arg \left(\frac{\mathbf{Z}_{2}^{2}}{\mathbf{Z}_{1} \cdot \mathbf{Z}_{3}}\right)=\arg \left(\mathbf{Z}_{2}^{2}\right)-\arg \left(\mathbf{Z}_{1} \cdot \mathbf{Z}_{3}\right)
$$

$$
=2 \arg \left(\mathbb{Z}_{2}\right)-\left(\arg \left(\mathbb{Z}_{1}\right)+\arg \left(\mathbb{Z}_{3}\right)\right)
$$

$$
=2 \cdot \frac{2 \pi}{3}+\frac{\pi}{4}-\frac{7 \pi}{6}=\frac{5 \pi}{12}
$$

$$
\frac{\mathrm{Z}_{2}^{2}}{\mathrm{Z}_{1} \cdot \mathrm{Z}_{3}}=\frac{9 \sqrt{2}}{8}\left[\cos \frac{5 \pi}{12}+\mathrm{i} \sin \frac{5 \pi}{12}\right]
$$

$$
\left|Z_{3}^{4}\right|=\left|Z_{3}\right|^{4}=(8)^{4}=4096
$$

$$
\arg \left(Z_{3}^{4}\right)=4 \arg \left(Z_{3}\right)=4 \cdot \frac{7 \pi}{6}=\frac{14 \pi}{3}
$$

$Z_{1}=\frac{\sqrt{3}+1+2 i+\sqrt{3}-1}{2}=\sqrt{3}+i \quad 9 \quad Z_{2}=\frac{\sqrt{3}+1+2 \mathbf{i}-(\sqrt{3}-1)}{2}=1+1$
$C_{1}^{11}(\cos \theta)^{4} \cdot(\mathrm{i} \sin \theta)^{0}+\mathbf{C}_{4}^{1}(\cos \theta)^{4-1} \cdot(\mathrm{i} \sin \theta)^{1}+\mathbf{C}_{4}^{2}(\cos \theta)^{4-2} \cdot(\mathrm{i} \sin \theta)^{2}$

$$
+\mathbf{C}_{4}^{3}(\cos \theta)^{4-3} \cdot(\mathrm{i} \sin \theta)^{3}+\mathrm{C}_{4}^{4}(\cos \theta)^{4-4} \cdot(\mathrm{i} \sin \theta)^{4}
$$

$\cos ^{4} \theta+4 i \cos ^{3} \theta \sin \theta-6 \cos ^{2} \theta \sin ^{2} \theta-4 i \cos \theta \sin ^{3} \theta+\sin ^{4} \theta$
$\left(\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta\right)+\mathbf{i}\left(\cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta\right)$ الاستنتاج : من (1) و (2) نستنتج أن : in $4 \theta=4 \cos ^{3} \theta \cdot \sin \theta-4 \cos \theta \cdot \sin ^{3} \theta$
$\arg \left(Z_{1}\right)=\frac{\pi}{6}:\left\{\begin{array}{l}\cos \theta_{2}=\frac{\sqrt{3}}{2} \\ \sin \theta_{2}=\frac{1}{2}\end{array},\left|Z_{1}\right|\right.$
$\theta_{1}=\frac{\pi}{6}: Z_{1}=2\left[\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right], Z_{2}=\sqrt{2}\left[\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right]$
$\begin{aligned} & \arg \left(Z_{1}\right)=\frac{\pi}{6}: \text { i }:\left\{\begin{array}{l}\cos \theta_{2}=\frac{\sqrt{3}}{2} \\ \sin \theta_{2}=\frac{1}{2}\end{array}, \mid Z\right. \\ & \theta_{1}=\frac{\pi}{6}\end{aligned}, \quad \begin{aligned} & \text { (}\end{aligned}$
(1) $\ldots \cos \theta+i \sin \theta=e^{i \theta}$: لاينا
(2) $\ldots \cos \theta-\mathrm{i} \sin \theta=\mathrm{e}^{-i \theta}$
$\cos \theta=\frac{\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}}{2}: 2 \cos \theta=\mathrm{e}^{\mathrm{i} \mathrm{\theta}}+\mathrm{e}^{-\mathrm{i} \theta} \quad$ ومنهـ

-حساب

$$
(\cos \theta+i \sin \theta)^{4}=\cos 4 \theta+i \sin 4 \theta \text { بطريقة هو افر }
$$

$$
(\cos \theta+\mathrm{i} \sin \theta)^{4}=\sum_{\mathrm{p}=0}^{\mathrm{p}=4} \mathbf{C}_{4}^{\mathrm{p}}(\cos \theta)^{4-\mathrm{p}} \cdot(\mathrm{i} \sin \theta)^{p}
$$

2) بدستور ثنائي الحد :

التّمرين 9 :
$\arg \left(Z_{2}\right)=\frac{\pi}{4}: \theta_{2}=\frac{\pi}{4}:\left\{\begin{array}{l}\cos \theta_{2}=\frac{\sqrt{2}}{2} \\ \sin \theta_{2}=\frac{\sqrt{2}}{2}\end{array} \quad,\left|Z_{2}\right|=\sqrt{1}\right.$
$Z^{4}=1$: 1 : خل المعادلة
$\left(\mathbf{Z}^{2}-\mathbf{1}\right)\left(\mathbf{Z}^{2}+1\right)=0: \mathbf{Z}^{4}-\mathbf{~}$

g $\mathbf{Z}=\mathbf{i}$, $\mathbf{Z}=-\mathbf{1}$, $\mathbf{Z}=\mathbf{1}: \mathbf{Z}^{2}=\mathbf{i}^{2}$ of $\mathbf{Z}^{2}=\mathbf{1}$ S $=\{1,-1, i,-i\}:$: مجمو عة الحول
(2) النشض

$$
\begin{aligned}
& \mathbf{Z}^{3}+\mathbf{Z}^{2}+\mathbf{Z}+\mathbf{1}=0 \text { : استنتاج حلول المعادلة }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
(\sqrt{3}-1)^{2}: \text { :- } 1 \\
(\sqrt{3}-1)^{2}=(\sqrt{3})^{2}-2 \sqrt{3} \cdot 1+(1)^{2}=3-2 \sqrt{3}+1=4-2 \sqrt{3}
\end{array} \\
& \text { :2 } \\
& \Delta=[\sqrt{3}+1+2 i]^{2}-4[\sqrt{3}-1+i(\sqrt{3}+1)] \\
& \Delta=(\sqrt{3}+1)^{2}+2(\sqrt{3}+1) \cdot 2 i+(2 i)^{2}-4(\sqrt{3}-1)-4 i(\sqrt{3}+1) \\
& \Delta=3+2 \sqrt{3}+1+4 \sqrt{3} i+4 i-4-4 \sqrt{3}+4-4 i \sqrt{3}-4 i \\
& \Delta=4-2 \sqrt{3}=(\sqrt{3}-1)^{2}
\end{aligned}
$$

$Z_{2}=1$ - i $\quad, \quad Z_{1}=\sqrt{3}+i$: بوضع: $\arg (Z)$, $|Z|$

$$
\begin{gathered}
\theta_{1}=\frac{\pi}{6}: \cos \left\{\begin{array}{l}
\cos \theta_{1}=\frac{\sqrt{3}}{2} \\
\sin \theta_{1}=\frac{1}{2}
\end{array},\left|\mathbf{Z}_{1}\right|=2\right. \\
\theta_{2}=-\frac{\pi}{4}: \cos g \begin{cases}\cos \theta_{2}=\frac{\sqrt{2}}{2} & ,\left|\mathbf{Z}_{2}\right|=\sqrt{2} \\
\sin \theta_{2}=\frac{-\sqrt{2}}{2}\end{cases} \\
|\mathbf{Z}|=\frac{\left|\mathbf{Z}_{1}\right|}{\left|\mathbf{Z}_{2}\right|}=\frac{2}{\sqrt{2}}=\sqrt{2}
\end{gathered}
$$

$\arg (Z)=\arg \left(Z_{1}\right)-\arg \left(Z_{2}\right)=\frac{\pi}{6}+\frac{\pi}{4}=\frac{5 \pi}{12}$
(1-1.
$Z=\frac{\sqrt{3}+i}{1-i}=\frac{\sqrt{3}+i}{1-i} \times \frac{1+i}{1+i}=\frac{\sqrt{3}+i \sqrt{3}+i-1}{2}$

$$
\begin{aligned}
& \mathrm{Z}=\frac{\sqrt{3}-1}{2}+\mathrm{i} \frac{\sqrt{3}+1}{2} \\
& \quad \sin \frac{5 \pi}{12}, \cos \frac{5 \pi}{12}
\end{aligned}
$$

$$
\sin \frac{5 \pi}{12}=\frac{\frac{\sqrt{3}+1}{2}}{\sqrt{2}} \quad, \quad \cos \frac{5 \pi}{12}=\frac{\frac{\sqrt{3}}{2}}{\sqrt{2}}
$$

$$
\sin \frac{5 \pi}{12}=\frac{\sqrt{3}+1}{2} \times \frac{1}{\sqrt{2}} \quad, \cos \frac{5 \pi}{12}=\frac{\sqrt{3}-1}{2} \times \frac{1}{1}
$$

$$
\sin \frac{5 \pi}{12}=\frac{\sqrt{3}+1}{2 \sqrt{2}}, \cos \frac{5 \pi}{12}=\frac{\sqrt{3}}{2 \sqrt{2}}
$$

$$
\sin \frac{5 \pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}, \cos \frac{5 \pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}
$$

 $\arg \left(Z_{1} \cdot Z_{2}\right)=\frac{\pi}{4}+\frac{\pi}{6}=\frac{5 \pi}{12},\left|Z_{1} \cdot Z_{2}\right|=2 \sqrt{2}$ 5- تعيين قيم n:

$$
\mathrm{Z}_{1} \cdot \mathrm{Z}_{2}=2 \sqrt{2}\left[\cos \frac{5 \pi}{12}+\mathrm{i} \sin \frac{5 \pi}{12}\right]: \text { لدينا }
$$

$$
\frac{Z_{1} \cdot Z_{2}}{2 \sqrt{2}}=\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12} \quad: \quad \text { ومنه }
$$

$$
\left(\frac{\mathrm{Z}_{1} \cdot \mathrm{Z}_{2}}{2 \sqrt{2}}\right)^{n}=\cos \frac{5 \pi n}{12}+\mathrm{i} \sin \frac{5 \pi n}{12}: \dot{\mathrm{j}}
$$

$$
\left\{\begin{array}{l}
\sin \frac{5 \pi n}{12}=0 \\
\cos \frac{5 \pi n}{12}>0
\end{array}: \quad:\left(\frac{\mathrm{Z}_{1} \cdot \mathrm{Z}_{2}}{2 \sqrt{2}}\right)^{n} \in \mathbb{R}_{+}\right.
$$

$\mathrm{k} \in \mathbb{N}, \frac{5 \pi \mathrm{n}}{12}=0+2 \mathrm{k} \pi:$ g ومنه
: ومنه : $\alpha \in \mathbb{N}$ مn $=24 \alpha$: أي α أن $\alpha \in \mathbb{N}, k=5 \alpha$

$|\mathrm{b}|=\left|\frac{\mathrm{Z}_{2}}{\sqrt{2}}\right|=\frac{\left|\mathrm{Z}_{2}\right|}{\sqrt{2}}=1 \quad,|\mathrm{a}|=\left|\frac{\mathrm{Z}_{1}}{2}\right|=\frac{\left|\mathrm{Z}_{1}\right|}{1}=1$

$$
\begin{aligned}
& \overline{\mathbf{C}}=\overline{\left(\frac{\mathbf{a}+\mathbf{b}}{1+\mathbf{a b}}\right)}=\frac{\overline{\mathbf{a}}+\overline{\mathrm{b}}}{1+\overline{\mathbf{a}} \cdot \overline{\mathrm{b}}} \quad \text { b } \mathrm{a} \text { a } \text { حساب } \text {. } \\
& \overline{\mathrm{a}}=\frac{1}{\mathrm{a}}, \overline{\mathrm{~b}}=\frac{1}{\mathrm{~b}} \text { : ويما أن } \\
& \overline{\mathbf{C}}=\frac{\mathrm{b}+\mathrm{a}}{\mathbf{a b}+1} \\
& \text { : و ومنه } \overline{\mathrm{C}}
\end{aligned}
$$

التيان ان : ومنه $\mathbf{p}(\alpha)=0$: ولدينا Z $=\alpha$
$4 \alpha^{3}-6 i \sqrt{3} \alpha^{2}-3(3+i \sqrt{3}) \alpha-4=0$ $4 \alpha^{3}-6 i \sqrt{3} \alpha^{2}-9 \alpha-3 i \sqrt{3} \alpha-4=0$ $4 \alpha^{3}-9 \alpha-4-i\left(6 \sqrt{3} \alpha^{2}+3 \sqrt{3} \alpha\right)=0$
$4 \alpha^{3}-9 \alpha-4-3 \sqrt{3} i\left(2 \alpha^{2}+\alpha\right)=0$

$$
\left\{\begin{array}{l}
4 \alpha^{3}-9 \alpha-4=0 \ldots \tag{1}\\
2 \alpha^{2}+\alpha=0 \ldots(2)
\end{array}\right.
$$

$\alpha=-\frac{1}{2}$ gi $\alpha=0$ نذ $2 \alpha^{2}+\alpha=0$:

$$
p(Z)=(Z-\alpha)\left(a Z^{2}+b Z+c\right): c, b, a-N
$$

$$
\mathrm{p}(\mathrm{Z})=\mathrm{aZ} \mathbf{Z}^{3}+\mathrm{b} \mathbf{Z}^{2}+\mathrm{cZ}-\mathrm{a} \alpha \mathbf{Z}^{2}-\mathrm{b} \alpha \mathbf{Z}-\alpha \mathbf{C}
$$

$$
\begin{aligned}
& \alpha=-\frac{1}{2} \quad \text { نك } \quad\left\{\begin{array}{l}
a=4 \\
b-a \alpha=-6 i \sqrt{3} \\
c-b \alpha=-9-3 i \sqrt{3} \\
-a c=-4
\end{array}\right. \\
& \left\{\begin{array}{l}
a=4 \\
b=-2-6 i \sqrt{3} \\
c=-8
\end{array}:\left\{\begin{array}{l}
a=4 \\
b+2=-6 i \sqrt{3} \\
c+\frac{1}{2} b=-9-3 i \sqrt{3} \\
+\frac{1}{2} c=-4
\end{array}\right.\right. \\
& p(Z)=\left(Z+\frac{1}{2}\right)\left[4 Z^{2}-(2+6 \sqrt{3} i) Z-8\right]
\end{aligned}
$$

$$
\mathrm{Z}=\sqrt{2}\left[\cos \frac{5 \pi}{12}+\mathrm{i} \sin \frac{5 \pi}{12}\right]: \text { : لدينا }
$$

$$
\frac{\mathrm{Z}}{\sqrt{2}}=\cos \frac{5 \pi}{12}+\mathrm{i} \sin \frac{5 \pi}{12}: \text { ومنه }
$$

$$
\left(\frac{\mathrm{Z}}{\sqrt{2}}\right)^{n}=\cos \frac{5 \pi n}{12}+\mathrm{i} \sin \frac{5 \pi n}{12}: \text { gnنه }
$$

$\frac{5 \pi}{12}=\frac{\pi}{2}+\mathrm{k} \pi \quad: \quad \cos \frac{5 \pi}{12}=0 \quad$: \quad : $\operatorname{Im}\left(\frac{Z}{\sqrt{2}}\right)^{n}=0$ $5 \mathrm{n}=6+12 \mathrm{k}$: $: 5 \pi \mathrm{n}=6 \pi+12 \mathrm{k} \pi$: $\frac{\mathrm{n}}{6}=\frac{1+2 \mathrm{k}}{5}=\alpha \quad: \quad 5 \mathrm{n}=6(1+2 \mathrm{k}) \quad$:

التّرين 12 :

$$
\Delta=-3-4 i \quad \text { iبن : } \quad \Delta=-16-24 i+9+4+20 i \quad \text { i }
$$

$$
\left\{\begin{array}{l}
\alpha^{2}-\beta^{2}=-3 \ldots(1) \\
2 \alpha \beta=-4 \ldots(2) \\
\alpha^{2}+\beta^{2}=5 \ldots(3)
\end{array}:\left\{\begin{array}{l}
\Delta=\delta^{2} \\
|\Delta|=\left|\delta^{2}\right|
\end{array} \quad: \quad \text { نـريعي } \delta=\alpha+i \beta\right.\right.
$$

$$
\text { ويجمع (1)و (3) نجد } 2 \alpha^{2}=2 \text { وعليه } \alpha=-1 \text { ومنه } \alpha=1 \text { ا } \alpha=1
$$

$$
\beta=2: \alpha=-1 \text { L' } \beta=-2: \alpha=1 \text { L }
$$

$$
\delta_{2}=-1+2 i \quad, \quad \delta_{1}=1-2 i \quad: \quad \text { ومنه : جذري هما }
$$

وعايه للمعادلة طلين : Z و Z Z

$$
z_{2}=\frac{-4 i+3+1-2 i}{2 i} \quad, \quad Z_{1}=\frac{-4 i+3-1+2 i}{2 i}
$$

: $\mathrm{Z}_{2}=\frac{-6 \mathbf{i}+4}{2 \mathbf{i}}=\frac{-3 i+2}{i} \quad, Z_{1}=\frac{-2 i+2}{2 i}=\frac{-i+1}{i}$
$Z_{2}=\frac{(-3 i+2)(-i)}{i(i)}=-3-2 i \quad, \quad Z_{1}=(-i+1)(-i)=-1-i$
3-
$S=\left\{-\frac{1}{2},-\frac{1}{2}+\frac{1}{2} \sqrt{3} \mathbf{i}, 1+i \sqrt{3}\right\}:$:

$$
(1-2 i)^{2}=1-4 i-4=-3-4 i
$$

$$
(1+2 i)^{2}=1+4 i-4=-3+4 i
$$

$$
Z^{2}+6 \mathbf{Z}+25=0 \quad \text { 2 }
$$

$$
\begin{array}{r}
Z^{2}+6 Z+25=0 \\
\Delta^{\prime}=16 i^{2} \text { ومنه للمعادلد } \Delta^{\prime} \Delta^{\prime}=(3)^{2}-25=-16 \\
Z_{2}=-3+4 i \quad \text { o } \quad Z_{1}=-3-41
\end{array}
$$

$$
\begin{aligned}
&= 16 i^{2} \quad \Delta^{\prime}=(3)-25-1 i \\
& \mathbf{Z}_{2}=-3+4 i \quad g \quad \mathbb{Z}_{1}=-3-4 i \\
& \text { أ }
\end{aligned}
$$

$$
t^{4}+6 t+25=0 \text { : }
$$

$$
\begin{aligned}
& t^{4}+6 t+20-0 \\
& Z_{1}=-3-4 i: \\
& \mathbf{Z}^{2}+6 Z+25=0: \mathbf{t}^{2}=Z \\
&\left.Z_{2}=-3+4 i\right)
\end{aligned}
$$

$$
Z_{2}=-3+4 i
$$

$$
\begin{gathered}
\mathbf{t}^{2}=-3+4 i \quad, \quad t^{2}=-3-4 i: \\
\mathbf{t}^{2}=(1+2 i)^{2} \quad \text { g } \quad \mathbf{t}^{2}=(1-2 i)^{2}:(1)
\end{gathered}
$$

f far

1) $\mathbb{Z}^{\prime}-1-2 \mathbf{i}=\mathbf{Z}$

$$
=\frac{\mathbb{Z}}{\overrightarrow{\mathbf{W}}}(1 ; 2) \text { (} \mathbf{Z}^{\prime}=\mathbf{Z}+\mathbf{1}+2 \mathbf{i}
$$

2) $\mathbf{Z}^{\prime}=(1+\sqrt{2}) \mathbf{Z}-4 i+4 \sqrt{2}$

$$
\mathbf{a} \in \mathbb{R}, \mathbf{a} \neq 0 \text { حيث } \mathbf{Z}^{\prime}=\mathbf{a Z}+\mathbf{b} \text { : }
$$

$$
\begin{array}{lll}
Z_{0}=\frac{-4 i+\sqrt{2}}{-\sqrt{2}} & : Z_{0}=\frac{-4 i+\sqrt{2}}{1-1-\sqrt{2}} \\
Z_{0}=-1+2 i \sqrt{2} & : \text { g ع } 1+ & Z_{0}=\frac{4 i \sqrt{2}-2}{2}
\end{array}
$$

$\mathbf{Z}+\frac{1}{2}=0$ g $4 \mathbf{Z}^{2}-(2+6 \sqrt{3} i) \mathbf{Z}-8=0$ تكافـ $\mathbf{p}(\mathbf{Z})=0$

$$
4 Z^{2}-2(1+3 \sqrt{3 i}) Z-8=0 \text { g } Z=-\frac{1}{2}
$$

$\Delta=(1+3 \sqrt{3} i)^{2} 4(2)(-4):$ i $2 \mathbf{Z}^{2}-(1+3 \sqrt{3 i}) \mathbf{Z}-4=0:$ in $\Delta=6(1+\sqrt{3} i)$ أي أن $\Delta=1+6 \sqrt{3} i-27+32=6+6 \sqrt{3} \mathrm{i}$ ؤيه $\Delta=1$
$1+\sqrt{3}$ i حساب الجذرين التربيعيين للعدد

(2) $\delta=\alpha+i \beta$ ومنیه

$$
\begin{equation*}
\alpha=-\frac{\sqrt{6}}{2} \cdot \text { و ومبنه } \alpha=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{6}}{2} \text { و } \alpha^{2}=\frac{3}{2} \text { : (2) } \alpha \text { (2) } \tag{3}
\end{equation*}
$$

$$
\beta=\frac{\sqrt{2}}{2} \quad \text { : ي } \quad \beta=\frac{\sqrt{3}}{\sqrt{6}} \quad: \text { ن cit } \alpha=\frac{\sqrt{6}}{2}
$$

$$
\beta=\frac{-\sqrt{2}}{2} \quad: \quad \alpha=\frac{-\sqrt{6}}{2}
$$

$$
\delta_{2}=\frac{-\sqrt{6}}{2}-i \frac{\sqrt{2}}{2}, \quad \delta_{1}=\frac{\sqrt{6}}{2}+i \frac{\sqrt{2}}{2} \text { ومنه يوجد جذرين }
$$ ومنه جذر ي

$$
-3-i \sqrt{3}
$$

$$
Z_{1}=\frac{1+3 \sqrt{3} i-3-i \sqrt{3}}{4} \cdot و \text { وبالنالي للمعادلة حلين متمايزين }
$$

$$
Z_{2}=\frac{1+3 \sqrt{3} i+3+i \sqrt{3}}{4}
$$

$$
Z_{2}=1+i \sqrt{3} \quad, \quad Z_{1}=-\frac{1}{2}+\frac{1}{2} \sqrt{3} i \quad: \dot{u}
$$

$\arg (-\sqrt{3}+i)=\theta \quad|-\sqrt{3}+i|=2: \quad$: فابذا كاتت

$$
-\sqrt{3}+i=2 \mathrm{e}^{\frac{i \pi}{6}} \quad: \text { ومنه } \quad\left\{\begin{array}{l}
\cos \theta=\frac{-\sqrt{3}}{2} \\
\sin \theta=\frac{1}{2}
\end{array}\right.
$$

$$
\mathrm{Z}_{1}=(-\sqrt{3}+\mathrm{i})^{2007}=2^{2007} \cdot\left(\mathrm{e}^{\mathrm{i} \frac{5 \pi}{6}}\right)^{2007}
$$

$$
=2^{2007} \cdot \mathrm{e}^{\mathrm{i} \frac{5 \pi}{6} \times 2007}=2^{2007} \cdot \mathrm{e}^{\mathrm{i} \cdot \frac{10035 \pi}{6}}
$$

$$
\frac{10035 \pi}{6}=\frac{\pi}{2}+1672 \pi: \text { ي } \frac{10035 \pi}{6}=\frac{1672 \times 6 \pi+3 \pi}{6}
$$

$$
\begin{array}{r}
(-\sqrt{3}+i)^{2007}=2^{2007} \cdot \mathrm{e}^{i\left(\frac{\pi}{2}+1672 \pi\right)}=2^{2007} \cdot \mathrm{e}^{\mathrm{i} \frac{\pi}{2}} \\
Z_{1}=2^{2007}(1)=2^{2007}
\end{array}
$$

$$
\begin{aligned}
& Z^{\prime}=\frac{2}{3} Z+1-\frac{1}{3} i \quad \text { وبالثالي } \quad b=1-\frac{1}{3} i \quad: \quad \text { وعليه } \\
& \frac{b}{1-a}=1-i \quad, \quad a=e^{i \theta}=e^{i \frac{\pi}{4}}: \quad Z^{\prime}=a Z+b(3 \\
& b=(1-i)\left(1-e^{i \frac{\pi}{4}}\right): \frac{b}{1-e^{i \frac{\pi}{4}}}=1-i \quad \text { وعلنه } \\
& b=1-i-e^{i \frac{\pi}{4}}+i e^{-i \frac{\pi}{4}} \text { ومبالتالمي } \quad \text { ومنه } b=1-e^{i \frac{\pi}{4}}-i+i e^{i \frac{\pi}{4}} \\
& b=1-i-\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)+i\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
& b=1-i-\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)+i\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)=1-\sqrt{2}-i \\
& Z^{\prime}=\mathrm{e}^{\mathrm{i} \frac{\pi}{4}} \mathbf{Z}+1-\sqrt{2}-\mathrm{i} \\
& \text {-i } 17 \text { : } 17 \text { : }
\end{aligned}
$$

$$
Z^{\prime}=\frac{\sqrt{2}}{2}(1-i) Z-\sqrt{2}+1+i
$$

$$
\left\{\begin{array}{l}
\cos \theta=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \quad,|1-i|=\sqrt{2} \\
\sin \theta=\frac{-1}{\sqrt{2}}=\frac{-\sqrt{2}}{2}
\end{array}\right.
$$

$$
1-i=\sqrt{2}\left(\cos \left(\frac{-\pi}{4}\right)+i \sin \left(\frac{-\pi}{4}\right)\right): \arg (1-i)=\frac{-\pi}{4}: \text { ومنه } \text { وعليه }
$$

$$
\frac{\sqrt{2}}{2}(1-i)=\cos \left(\frac{-\pi}{4}\right)+i \sin \left(\frac{-\pi}{4}\right)=e^{-i \frac{\pi}{4}} \quad: \text { وعليه }
$$

$$
\mathbf{Z}^{\prime}=\mathrm{e}^{-i \frac{\pi}{4}} \mathbf{Z}-\sqrt{2}+1+\mathbf{i}: \text { : }
$$

$$
\text { وبالتالي فهو من الشكل : حيث : } \quad \text { : } \mathbf{Z}^{\prime}=\mathbf{a Z}+\mathbf{~}=e^{i \theta}
$$

$$
Z_{0}=\frac{-\sqrt{2}+1+i}{\frac{\sqrt{2}}{2}(1-i)}=\frac{2}{\sqrt{2}} \times \frac{(-\sqrt{2}+1+i)(1+i)}{(1-i)(1+i)}
$$

$$
Z_{0}=\sqrt{2} \times \frac{-\sqrt{2}-2 \sqrt{2}+1+i+i-1}{2}=\frac{\sqrt{2}}{2}(-\sqrt{2}-\mathbf{i} \sqrt{2}+2 i)
$$

$$
A_{0}=-1-i+i \sqrt{2}=-1+(-1+\sqrt{2}) i
$$

$$
\text { ويالتالي : } \Omega(-1 ;-1+\sqrt{2})
$$

$Z^{\prime}=Z+2-i \quad: \quad$: ومنه $a=1$ و $b=2-i \quad Z^{\prime}=a Z+b$ (1

$$
\frac{b}{1-a}=3-i \quad a=\frac{2}{3} \quad \text { : } \quad Z^{\prime}=a Z+b
$$

3b=3-i : ومنه $\quad \frac{b}{\frac{1}{3}}=3-i \quad: \quad \frac{b}{1-\frac{2}{2}}=3-i \quad$: \quad :
$(\overrightarrow{\mathbf{A B}}, \overrightarrow{\mathbf{A C}})=\frac{\pi}{2}: \quad \arg \left(\frac{\mathbf{Z}_{C}-\mathbf{Z}_{A}}{\mathbf{Z}_{B}-\mathbf{Z}_{A}}\right)=(\overrightarrow{\mathbf{A B}}, \overrightarrow{\mathbf{A C}}):$ لدمنا

1) حساب

$$
\begin{aligned}
& Z^{\prime}=\frac{Z+i}{Z-i} \\
& \begin{aligned}
x^{\prime}+i y^{\prime} & =\frac{x+i y+i}{x+i y-i}=\frac{x+i(y+1)}{x+i(y-1)}=\frac{x+i(y+1)}{x+i(y-1)}=\frac{x-i(y-1)}{x-i(y-1)} \\
& =\frac{x^{2}-i x(y-1)+i x(y+1)+(y+1)(y-1)}{x^{2}+(y-1)^{2}} \\
& =\frac{x^{2}+y^{2}-1+i x(-y+1+y+1)}{x^{2}+(y-1)^{2}}
\end{aligned}
\end{aligned}
$$

$$
x^{\prime}+i y^{\prime}=\frac{x^{2}+y^{2}-1}{x^{2}+(y-1)^{2}}+i \frac{2 x}{x^{2}+(y-1)^{2}}
$$

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{x^{2}+y^{2}-1}{x^{2}+(y-1)^{2}} \\
y^{\prime}=\frac{2 x}{x^{2}+(y-1)^{2}}
\end{array}\right.
$$

(2 يكون

$$
\left\{\begin{array}{ll}
x=0 \\
x^{2}+(y-1)^{2} \neq 0
\end{array}: \begin{array}{l}
: \begin{array}{l}
\text { وبالتالي }
\end{array} \\
\left\{\begin{array}{l}
x=0 \\
(x ; y) \neq(0,1)
\end{array}\right.
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
x^{2}+y^{2}=1 \\
g
\end{array}:\left\{\begin{array}{l}
x^{2}+y^{2}-1=0 \\
x^{2}+(y-1)^{2} \neq 0
\end{array}\right.\right.
$$

$$
Z_{2}=\frac{i}{2-2 i \sqrt{3}}
$$

$$
i=e^{i \frac{\pi}{2}}: \quad \arg (i)=\frac{\pi}{2},|i|=1 \quad: \quad \text { ومنه } \quad \text { •ليينا }
$$

$$
\text { -ولدينا : } 4 \text { (2-2i } \sqrt{3}) \text { هي } \theta \text { فاذذا كانت عمدة : }
$$

$$
2-2 \mathrm{i} \sqrt{3}=4 \mathrm{e}^{-\mathrm{i} \frac{\pi}{3}}: \quad \theta=-\frac{\pi}{3}: \text { وبالثالي }: \quad\left\{\begin{array}{l}
\cos \theta=\frac{1}{2} \\
\sin \theta=\frac{-\sqrt{3}}{2}
\end{array}\right.
$$

Z 2- ABC بيعة المثلث
$|\mathbf{Z}|=\frac{\mathbf{A C}}{\mathbf{A B}} \quad:|\mathbf{Z}|=\frac{\left|\mathbf{Z}_{\mathrm{C}}-\mathbf{Z}_{A}\right|}{\left|\mathbf{Z}_{\mathrm{B}}-\mathbf{Z}_{\mathrm{A}}\right|}$: ومنه $\quad \mathbf{Z}=\frac{\mathbf{Z}_{\mathrm{C}}-\mathbf{Z}_{\mathrm{A}}}{\mathbf{Z}_{\mathrm{B}}-\mathbf{Z}_{\mathrm{A}}}$: لدينا

$$
\text { ككن : } \mathrm{AC}=\mathrm{AB} \text { : } \frac{\mathrm{AC}}{\mathrm{AB}}=1 \text { ومنه }|\mathbf{Z}|=1 \text { : }
$$

$$
\begin{aligned}
& Z_{2}=\frac{1}{4} e^{i \frac{\pi}{2}} \cdot e^{i \frac{\pi}{3}}: \mathbf{N}_{2}=\frac{e^{i \frac{\pi}{2}}}{4 e^{-i \frac{\pi}{3}}}: \text { ن } \frac{j}{} \\
& Z_{2}=\frac{1}{4} e^{i . \frac{5 \pi}{6}}: \quad Z_{2}=\frac{1}{4} e^{\left(\frac{\pi}{2}+\frac{\pi}{3}\right)}: \text { : } \\
& Z_{2}=\frac{1}{4}\left[\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right]: \\
& \left.\mathbf{Z}_{2}=\frac{-\sqrt{3}}{8}+\frac{1}{8} \mathbf{i} \text { : أي } \mathbf{Z}_{2}=\frac{1}{4}\left[\frac{-\sqrt{3}}{2}+\frac{1}{2} \mathbf{i}\right] \text { : }\right\}
\end{aligned}
$$

$\left(x+\frac{1}{4}\right)^{2}+y^{2}=\frac{9}{16}: \dot{j} \cdot\left(x+\frac{1}{4}\right)^{2}-\frac{1}{16}+y^{2}-\frac{1}{2}=0$ ومنه مجموعة النقط هي الدانرة ذات المركز

$$
\mathrm{D}(-1 ; 0)
$$

$$
\mathbf{Z}^{\prime}+\overline{\mathbf{Z}^{\prime}}=0 \text { : تخيلي صرف يكافیى } \mathbf{Z}^{\prime} \text { (2 }
$$

الثرض $\theta_{3}, \theta_{2}, \theta_{1}$ عدالأعداد المركبة $\mathbf{Z}_{3}, \mathbf{Z}_{2}, \mathbf{Z}_{1}$ على الثرتيب فيكون :

$$
\begin{aligned}
& \theta_{3}=\theta_{1}+2 \cdot \frac{\pi}{6}, \theta_{2}=\theta_{1}+\frac{\pi}{6} \\
& \theta_{3}=\theta_{1}+\frac{\pi}{3}, \theta_{2}=\theta_{1}+\frac{\pi}{6}:
\end{aligned}
$$

$Z_{1} \cdot Z_{2} \cdot Z_{3}=-8$: لان $\arg \left(Z_{1}, Z_{2}, Z_{3}\right)=\pi$

$$
\arg \left(Z_{1}\right)+\arg \left(Z_{2}\right)+\arg \left(\mathbb{Z}_{3}\right)=\pi: \text { : le, }
$$

$$
3 \theta_{1}=0: \dot{\text { i }} \quad \theta_{1}+\theta_{1}+\frac{\pi}{6}+\theta_{1}+\frac{\pi}{3}=\pi: \text { Ah }
$$

$$
\theta_{3}=\frac{\pi}{3}, \theta_{2}=\frac{\pi}{6}: \theta_{1}=0
$$

 $\rho_{3}=2 \rho_{1}$ g ونه $\rho_{3}=\rho_{1}(\sqrt{2})^{2}, \rho_{2}=\rho_{1} \sqrt{2}:$ نر

$$
\left|\mathbf{Z}_{1}\right| \cdot\left|\mathbf{Z}_{2}\right| \cdot\left|\mathbf{Z}_{3}\right|=8:\left|Z_{1} \cdot Z_{2} \cdot Z_{3}\right|=|-8|=8
$$

$$
\rho_{1}^{3}=\frac{8}{2 \sqrt{2}}=\frac{4}{\sqrt{2}}=2 \sqrt{2}: \text { وباتكالي } \rho_{1} \cdot \rho_{1} \cdot \sqrt{2} \cdot 2 \rho_{1}=8
$$

 $\mathbf{M A}=\mathbf{M B} \quad \mathbf{~ ا ٔ ي ~ ا ٔ ن ~ : ~} \quad \mathbf{B M}=\mathbf{A M}: \frac{\mathbf{B M}}{\mathbf{~ ا}}$

 $\left\{\begin{array}{c}x^{2}-2 x+y^{2}-1=0 \\ 9 \\ (x ; y) \neq(0 ; 1)\end{array} \quad\left\{\begin{array}{c}x^{2}+y^{2}-1=2 x \\ 9 \\ (x ; y) \neq(0 ; 1)\end{array}\right.\right.$: ومنه

$$
\text { ת }(0 ; 1 ; 1) \text { (1;0) و نصف القطر } 1 \text { باستثناء }
$$

التمرين 20 :
تعيين مجموعة النقط :
Z حقيَّي معناه : Z (1
$(1-2 Z)(-i \bar{Z}-i)=(1-2 \bar{Z})(i \bar{Z}+i): \frac{1-2 Z}{i Z+i}=\frac{1-2 \bar{Z}}{-i \bar{Z}-i}$ $\bar{Z}-i+2 i \bar{Z} \bar{Z}+2 i \underline{Z}=i \bar{Z}+i-2 i \underline{Z} \bar{Z}-2 i \bar{Z}$
$1 \bar{Z}-i+2 i Z \bar{Z}+2 i Z-i Z-i+2 i \bar{Z} \bar{Z}+2 i \bar{Z}=0$
$i(\overline{\mathbf{Z}}+\mathbf{Z})+4 i \mathbf{Z} \overline{\mathbf{Z}}-2 \mathbf{i}=0 \quad$ ومنه $\quad i \bar{Z}-2 i+4 i \bar{Z} \overline{\mathbf{Z}}+i \mathbf{Z}=0$ $\mathbf{Z}+\overline{\mathbf{Z}}+4 \mathbf{Z} \overline{\mathbf{Z}}-2=0 \quad$: i : $\mathrm{i}[\overline{\mathbf{Z}}+\mathbf{Z}+4 \mathbf{Z} \overline{\mathbf{Z}}-2]=0$: 0 :
وبانتالي : $x^{2}+\frac{1}{2} x+y^{2}-\frac{1}{2}=0 \quad$: أن $\quad \frac{1}{2} x+x^{2}+y^{2}-\frac{1}{2}=0$

$$
\mathrm{DB}=\sqrt{10}: \mathrm{Z}_{\mathrm{B}}-\mathrm{Z}_{\mathrm{D}}=1+3 \mathrm{i}
$$

ومنه الرباعي ABDC مربع.

$$
\text { ج (التّفسير المهنسي لطبيعة } f \text { : }
$$ $-1-3 \mathrm{i}$ - لدينا التّمرين 23 : -

Z $\sin \alpha=2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}, \cos \alpha=2 \cos ^{2} \frac{\alpha}{2}-1: 1$ لد

$$
Z=2 \cos ^{2} \frac{\alpha}{2}+2 i \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}: \text { ونه }
$$

$$
\mathrm{Z}=2 \cos \frac{\alpha}{2}\left[\cos \frac{\alpha}{2}+\mathrm{i} \sin \frac{\alpha}{2}\right]
$$

$\cos \frac{\alpha}{2}>0$ فأن $0 \leq \alpha<\pi$ فأ $0 \leq \frac{\alpha}{2}<\frac{\pi}{2}$:

$$
\cos \frac{\alpha}{2}<0 \quad \text { فان } \pi<\alpha<2 \pi \quad \frac{\pi}{2}<\frac{\alpha}{2}<\pi \text { : أي }
$$

$$
Z=-2 \cos \frac{\alpha}{2}\left[-\cos \frac{\alpha}{2}-i \sin \frac{\alpha}{2}\right]: \Delta \operatorname{din}
$$

$$
\mathrm{Z}=-2 \cos \frac{\alpha}{2}\left[-\cos \left(\pi+\frac{\alpha}{2}\right)+\mathrm{i} \sin \left(\pi+\frac{\alpha}{2}\right)\right]: \text { din }
$$

$$
\text { اشهو الششكل المثلثي للـعدد Z لان : } 2 \cos \frac{\alpha}{2}>0-
$$

$$
\begin{array}{r}
\rho_{3}=2 \sqrt{2}, \rho_{2}=2 \quad, \quad \rho_{1}=\sqrt{2}: \operatorname{lin} \rho_{1}^{3}=(\sqrt{2})^{3} \\
Z_{1}=\sqrt{2} \text { ئ } \quad Z_{1}=\sqrt{2}[\cos 0+i \sin 0]: \text { i! } \\
Z_{2}=\sqrt{3}+i \quad \text { ي } \quad Z_{2}=2\left[\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right] \\
Z_{3}=\sqrt{2}+\sqrt{6} i \quad \text { i } \quad Z_{3}=2 \sqrt{2}\left[\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right]
\end{array}
$$

$$
\frac{c-a}{b-a}: 1 \text { حساب }
$$

$\frac{c-a}{b-a}=\frac{2-2 i-3-i}{2 i-3-i}=\frac{-1-3 i}{-3+i}=\frac{(-1-3 i)(-3-i)}{(-3+i)(-3+i)}=\frac{3+i+9 i-3}{10}=i$

$$
\frac{c-a}{b-a}=i \quad: \quad \text { ! }
$$

: ABC طبيعة المثلث

$$
\text { لدينا : } \mathrm{AC}=\mathbf{A B} \text { : } \quad \frac{\mathbf{A C}}{\mathbf{A B}}=1 \quad \text { : ومنه }\left|\frac{\mathbf{c}-\mathbf{a}}{\mathbf{b}-\mathbf{a}}\right|=1
$$

$$
(\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{AC}})=\frac{\pi}{2} \quad \text { ولدينا : } \quad \text { ومنه } \quad \arg \left(\frac{\mathrm{c}-\mathrm{a}}{\mathrm{~b}-\mathrm{a}}\right)=\frac{\pi}{2}
$$ ومنه المثلث ABC قانم في A ومتساوي الساقين .

$$
Z_{D}=2 i-1-3 i \quad \text { : } \mathrm{Z}_{\mathrm{D}}=\mathrm{Z}_{\mathrm{B}}-1-3 i \text { : منه : }
$$

: D- أ) حساب لاحقة

$$
f(\mathrm{~B})=\mathrm{D} \quad \text { لدينا: }
$$

$$
\mathrm{Z}_{\mathrm{D}}=-1-\mathrm{i}: \text { إن }
$$

ب) : بيعة الرباعي ABDC

$$
\mathrm{AB}=\sqrt{10}: \text { ومنا } \mathrm{H} \text { : } \mathrm{Z}_{\mathrm{B}}-\mathrm{Z}_{\mathrm{A}}=-3+\mathrm{i}
$$

$\mathrm{AB}=\mathrm{CD}:{ }^{\text {! }}$

$$
\begin{aligned}
& \text { CD }=\sqrt{10} \text { : ولدينا : } \mathrm{Z}_{\mathrm{D}}-\mathrm{Z}_{\mathrm{C}}=-3+\mathrm{i} \text { : } \\
& \mathbf{C A}=\sqrt{\mathbf{1 0}}: \text { ومنه } \mathrm{Z}_{\mathrm{A}}-\mathrm{Z}_{\mathrm{C}}=1+3 \mathrm{i} \text { : وكنك }
\end{aligned}
$$

$$
\mathbf{Z}_{1} Z_{2}=-\mathbf{2 - 2 i} \text { : } \mathbf{Z}_{1} \cdot \mathbf{Z}_{2}=\frac{\mathbf{c}}{\mathbf{a}} \text { : }
$$

\qquad

مـا أن ميل المستقيم $)$ ($\left.\mathbf{M}_{1} \mathbf{M}_{2}\right)$: ينطبق عظى المنصف الاول.

$2 \arg \left(\mathbf{Z}_{2}-\mathbf{Z}_{1}\right)=\frac{\pi}{2} \quad$ ومنه $\quad \arg \left(\mathbf{Z}_{2}-\mathbf{Z}_{1}\right)=\frac{\pi}{4} \quad$ وبالثالي $\arg \left[\mathbf{Z}_{2}^{2}-2 \mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1}^{2}\right]=\frac{\pi}{2}: \arg \left(\mathbf{Z}_{2}-\mathbf{Z}_{1}\right)^{2}=\frac{\pi}{2}$ أي أن $\arg \left[Z_{2}^{2}+2 Z_{1} Z_{2}+Z_{1}^{2}-4 Z_{1} Z_{2}\right]=\frac{\pi}{2}$

$$
\arg \left[\left(Z_{2}+Z_{1}\right)^{2}-4 Z_{2} Z_{2}\right]=\frac{\pi}{2}: \text { : }
$$

$$
\arg \left[(2 \alpha+2 i \beta)^{2}+8+8 i\right]=\frac{\pi}{2}
$$

$$
\arg \left[4 \alpha^{2}+8 \mathbf{i} \alpha \beta-4 \beta^{2}+8+8 \mathbf{i}\right]=\frac{\pi}{2}
$$

$$
\arg \left[4 \alpha^{2}-4 \beta^{2}+8+8 i(\alpha \beta+1)\right]=\frac{\pi}{2}: \text { : }
$$

$$
\left\{\begin{array}{l}
\alpha^{2}-\beta^{2}=-2 \\
\beta>-\frac{1}{\alpha}
\end{array}:\left\{\begin{array}{l}
\alpha^{2}-\beta^{2}+2=0 \\
\alpha \beta+1>0
\end{array}:\left\{\begin{array}{l}
4 \alpha^{2}-4 \beta^{2}+8=0 \\
\alpha \beta+1>0
\end{array}\right.\right.\right.
$$

($x^{2}-y^{2}=-2$ وهو قطع زائد . y

$$
\text { حل المعادلة : } 2 Z+3 \bar{Z}-2 i-10=0
$$

$$
\overline{\mathbf{Z}}=x-\mathrm{iy} \text { : نجـ } \mathrm{Z}=x+\mathrm{iy} \text { بوضع }
$$

$$
2(x+i y)+3(x-i y)-2 i-10=0 \quad: \quad \text { وبالتُويض في المعادلة نجد }
$$

$$
2 x+2 i y+3 x-3 i y-2 i-10=0 \quad: \quad \text { in }
$$

$$
5 x-10-i(y+2)=0 \quad \text { أي : } 5 x-10-i y-2 i=0 \text { ومنه }
$$

$$
Z_{0}=2-2 i \text { : } \quad\left\{\begin{array}{l}
x=2 \\
y=-2
\end{array}: \text { وعليه }:\left\{\begin{array}{c}
5 x-10=0 \\
g+2=0
\end{array}\right.\right.
$$

$$
\left\{\begin{array}{l}
\cos \theta=\frac{\sqrt{2}}{2} \quad \text { : فيكون } Z_{0} \text { عمدن } \theta \text { عمرض } \\
\sin \theta=\frac{-\sqrt{2}}{2}
\end{array}\left|Z_{0}\right|=2 \sqrt{2}\right.
$$

$$
\theta=\frac{-\pi}{4}+2 \mathrm{k} \pi ; k \in \mathbb{Z}: \text { ومنه }
$$

$$
\left|\overline{\mathbf{Z}_{0}}\right|=2 \sqrt{2} \quad \text { ومنه عمدة } \quad \frac{\pi}{4} \mathbf{Z}_{0} \quad \overline{Z_{0}} \text { هدينا : عمد } \frac{-\pi}{4}
$$

$$
\text { وعليه : OM'= OM : وبالتالي : }\left|Z_{0}\right|=\left|\overline{Z_{0}}\right|=2 \sqrt{2} \mid
$$

إدن المثلث
\qquad

$$
\mathbf{Z}_{1}+\mathbf{Z}_{2}=2(\alpha+i \beta): \quad \mathbf{Z}_{1}+\mathbf{Z}_{2}=\frac{2(\alpha+i \beta)}{1}: \text { i }
$$

مثال : الششكل المركب للتشابه المستوي المباشر الأي مركزه ω و نسبتّه 2 وز اويته $\frac{\pi}{3}$ حبث

$$
\begin{aligned}
& a=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=1+i \sqrt{3} \\
& Z^{\prime}-(2+i)=(1+i \sqrt{3})[Z-(2+i)]: \text { : وبالتالي } \\
& Z^{\prime}=(1+i \sqrt{3}) \mathbf{Z}-(1+i \sqrt{3}) \cdot(2+i)+2+i \\
& Z^{\prime}=(1+i \sqrt{3}) Z-2+\sqrt{3}-i-2 i \sqrt{3}
\end{aligned}
$$

شالات خاصة :

($\mathbf{Z}^{\prime}=\mathbf{Z}$
 a $=\cos \theta+i \sin \theta$

$$
\mathbf{Z}^{\prime}-\mathbf{Z}_{0}=k\left(\mathbf{Z}-\mathbf{Z}_{0}\right): \text { : }
$$

(التشابه المستوى المباشر الأي مركزه النقطة ω ذات الملاحقة 0. 0

$$
\begin{array}{r}
\mathbf{a}=k(\cos \theta+i \sin \theta): \mathbf{Z}^{\prime}-\mathbf{Z}_{0}=a\left(\mathbf{Z}-\mathbf{Z}_{0}\right) \\
\mathbf{Z}^{\prime}-\mathbf{Z}_{0}=\mathbf{e}^{i \theta} \cdot\left(\mathbf{Z}-\mathbf{Z}_{0}\right): \text { : } \mathbf{a}=k \cdot e^{i \theta}
\end{array}
$$

|lالداصبة المميزة تلتثابه مباشر :

12- التشابهه (المستوي المباشُر

1 1
نقطة ثابتة. θ عدد حقيقي ، k عدد حقيقي موجب تمامـا التثثابه الأي مركزه ω ونسبتّه k وزاويته θ هو التحويل النقطي الذي يرفق ω بنفسها

حالات خاصة :
إذا كان k=1 فإن التشثابه هو إزاحة أي دوران إذا كاتت θ غير معدومة وهو

$$
\text { التحويل المطابق إذا كانت } 0=0
$$

إذا كانت $0=0$ فإن التشابه هو التحاكي الذي نسبتّه k ومركزه
2-الكتابة المركبة للتشابه :
ليكن s تشثابه مستوي مباشر مركزه ف ونسبتّه k وز اويته
لاينا :

$$
\text { النقط } \omega \text { M } \mathbf{M}^{\prime}, \mathbf{M} \omega \mathbf{~} \mathbf{~ ف ل ى ~ ا ل ت ر ت ي ب ب ~ : ~}
$$

$$
\text { : ومنه }\left(\overrightarrow{\omega \mathbf{M}}, \overrightarrow{\omega \mathbf{M}^{\prime}}\right)=\theta:\left|\mathbf{Z}^{\prime}-\mathbf{Z}_{0}\right|=\mathbf{k} \cdot\left|\mathbf{Z}-\mathbf{Z}_{0}\right|
$$

$$
\left(\overrightarrow{\mathbf{U}}, \overrightarrow{\omega \mathbf{M}^{\prime}}\right)-(\overrightarrow{\mathbf{U}}, \overrightarrow{\omega \mathbf{M}})=\theta
$$

$\mathbf{Z}^{\prime}-\mathbf{Z}_{0}=\mathbf{a}\left(\mathbf{Z}-\mathbf{Z}_{0}\right):\left\{\begin{array}{l}\left|\mathbf{Z}^{\prime}-\mathbf{Z}_{0}\right|=\mathbf{k}\left|\mathbf{Z}-\mathbf{Z}_{0}\right| \\ \arg \left(\mathbf{Z}^{\prime}-\mathbf{Z}_{0}\right]=\theta+\arg \left(\mathbf{Z}-\mathbf{Z}_{0}\right)\end{array}\right.$

$$
|a|=k \quad, \quad \arg (a)=\theta
$$

$Z^{\prime}=\mathrm{aZ}+\mathrm{b} \quad \mathrm{C}=\mathrm{k}(\cos \theta+\mathrm{i} \sin \theta)$: C : C :

 الصامدة

61ر اسة التحويلات اللقطية :
 ر

1) إذا كان $f: \mathbf{Z}^{\prime}=\mathbf{Z}: b=0$ و a هو التحويل الدطابق (2

$$
\text { - } \frac{\text { d }}{\text { دات اللاحقة } 1-\mathbf{a}}
$$

b

تفإن $\operatorname{Im}(a) \neq 0 \quad, \quad|a| \neq 1$ تشابه مستوى مباشر

$$
\frac{b}{1-a}
$$

عد حقيقي موجب و θ عدد حقيقي. يكون التحويل النقطي f تشاباه مباشر نسبته k وز اويته

$$
\left\{\begin{array}{l}
\mathbf{A}^{\prime} \mathbf{M}^{\prime}=\mathbf{k} \mathbf{A M} \\
\left(\overrightarrow{\mathbf{A M}} ; \overrightarrow{\mathbf{A}^{\prime} \mathbf{M}^{\prime}}\right)=\theta+2 \mathbf{k} \pi, k \in \mathbb{Z}
\end{array}\right.
$$

$$
\frac{\mathbf{A}^{\prime} \mathbf{M}^{\prime}}{\mathbf{A M}}=k \quad \text { نتيجة : الثششابه المستوى المباشر يحافظ على نسب المسافات لان }
$$

$\left(\overrightarrow{\mathbf{A M}} ; \overrightarrow{\mathbf{A}^{\prime} \mathbf{M}^{\prime}}\right)=\theta+2 \mathrm{k} \pi:$ التشابه المسستوى المباشر يحافظ على الزوايا الموجهة لأن
5-مركب تشابهين مباشرين :
 وزاويته

$$
\mathbf{M} \xrightarrow{\mathbf{s}_{1}} \mathbf{M}_{1} \xrightarrow{\mathbf{s}_{2}} \mathbf{M}^{\prime}
$$

$$
\left|\mathbf{a}_{1}\right|=\mathbf{k}_{1}
$$

$$
\arg \left(a_{1}\right)=\theta_{1} \quad: \quad Z_{1}-Z_{0}=a_{1}\left(Z-Z_{0}\right) \text { فيكون }
$$

$$
\left|\mathbf{a}_{2}\right|=\mathbf{k}
$$

$$
\arg \left(\mathbf{a}_{2}\right)=\theta_{2} \quad: \quad \mathbf{Z}^{\prime}-\mathbf{Z}_{0}^{\prime}=\mathbf{a}_{2}\left(\mathbf{Z}_{1}-\mathbf{Z}_{0}^{\prime}\right): \text { وكنّ }
$$

$$
\begin{aligned}
& \mathbf{Z}^{\prime}=\mathbf{a}_{2} \mathbf{Z}_{1}+\left(\mathbf{1}-\mathbf{a}_{2}\right) \mathbf{Z}_{0}^{\prime} \text { و } \mathbf{Z}_{1}=\mathbf{a}_{1} \mathbf{Z}+\left(\mathbf{1}-\mathbf{a}_{1}\right) \mathbf{Z}_{0}: \text {. } \\
& \mathbf{Z}^{\prime}=\mathbf{a}_{2}\left[\mathbf{a}_{1} \mathbf{Z}+\left(1-\mathbf{a}_{1}\right) \mathbf{Z}_{0}\right]+\left(1-\mathbf{a}_{2}\right) \mathbf{Z}_{0}^{\prime}: \text { ويالتالئي } \\
& \text { : وو عليه } \mathbf{Z}^{\prime}=\mathbf{a}_{2} \mathbf{a}_{1} \mathbf{Z}+\mathbf{a}_{2}\left(1-\mathbf{a}_{1}\right) \mathbf{Z}_{0}+\left(1-\mathbf{a}_{1}\right) \mathbf{Z}_{0}^{\prime} \quad: \quad \text { : } \\
& \text { (1) إذا كان : } a_{2} a_{1}=1 \text { إنان } S_{2} 0 S_{1} \text { احة. }
\end{aligned}
$$

f f . $\mathbf{Z}^{\prime}=-2(1+\sqrt{3} i) Z-2-i \sqrt{3}$ استنتّج الشكل الأسي لهذا التّحويل.

أربعة نقط في المستوى لواحقها \mathbf{B}^{\prime}, A $^{\prime}, \mathbf{B}, \mathbf{A}$ $Z_{4}=-3+5 i, Z_{3}=11-14 i, Z_{2}=5+i, Z_{1}=1$ ~

$$
S(B)=B^{\prime}, S(A)=A^{\prime} \text { : عثم }
$$

 g و f f f ولمبته $\frac{1}{2}$ وزاويته $\frac{-\pi}{4}$ عين الشكل المركب لكل من التحويلّن
: حيث M($\left.x^{\prime} ; y^{\prime}\right)$ حبير التحويل الثنقطي f الذي يرفق بالنقطة

$$
\begin{aligned}
& \alpha=\beta=0, b=-1, a=-\sqrt{3} \text { ض } \quad \mathrm{b} \\
& \text {. } f \text { f } \\
& \text { : }
\end{aligned}
$$

$\mathbf{M}_{1}=f\left(\mathbf{M}_{1}\right), \mathbf{M}_{1}=f\left(\mathbf{M}_{0}\right), \mathbf{M}_{0}(1 ; 0)$

نــالill

ضع العلامـة ل أمام كل جملة صحيحة و العلامـة × أمام كل جملة خاطنة.

1) التشثابه بحافظظ على المسافات

2) كل دوران هو تشابه نسبتـه 1
3) مركب تششابهين لهما نفس المركز ف هو تثشابه مركزه (0
(5) مركب التشابهين

$$
\mathrm{S}\left(\omega, \frac{5 \pi}{12}, 12\right)
$$

6)صور ة مستقيم بتشابه هو مستقيم يوازيه
7) يوجد تشابهين تركيبهما دوران
8) يوجد تشابهين تركيبهما تحاكي

اللتمرين 2 :
تشابه مستوى مباشر نسبتّه 2 وز اويته $\frac{\pi}{6}$. ومركزه النقطة ω ذات اللاحقة

 ـ نقرض (التمرين 3 :

$$
\left\{\begin{array}{l}
x^{\prime}=4(x-y) \\
y^{\prime}=4(x+y)+1
\end{array}:\left(x^{\prime}, y^{\prime}\right)\right. \text { الاحداثيين }
$$

 النقط

 أكتب

ل1 1

اللتمرين 2 : -

$$
a=2 \cdot\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right): \text { حيث } Z^{\prime}=a Z+b \text { : لدينا }: Z \text { بدلابة } Z \text { Z } Z \text { Z }
$$

$$
a=\sqrt{3}+i \quad: \quad a=2\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right): \quad: \quad \text { gin }
$$

$$
\mathbf{Z}_{0}=\frac{\mathbf{b}}{1-\sqrt{3}-\mathbf{i}} \text { يلدينا لاحقة المركز : } \mathbf{Z}_{0}=\frac{\mathbf{b}}{1-\mathbf{a}}
$$

$b=(3+i)(1-\sqrt{3}-i) \quad 3+i=\frac{b}{1-\sqrt{3}-i}$ وند $Z_{0}=3+i$ if
$b=4-3 \sqrt{3}-(2+\sqrt{3}) i \quad b=3-3 \sqrt{3}-3 i+i-i \sqrt{3}+1$

$$
\mathbf{Z}^{\prime}=(\sqrt{3}+i) \mathbf{Z}+4-3 \sqrt{3}-(2+\sqrt{3}) \mathbf{i}
$$

$$
\text { ونسمي } \mathrm{M}_{\mathrm{n}}
$$

بين أن التمرين 8 : -
1

$$
\text { بحيث : } \mathbf{Z}^{\prime}=4 \mathrm{i} Z+2-8 i
$$

ماهي طبيعة التحويل f وماهي عناصره المميزة.

بحيث :

$2 Z^{2}-(1+5 i) Z+2(i-1)=0$: 0 : 1

$$
Z_{3}=\frac{\sqrt{2}}{2} i, Z_{2}=\frac{1}{2}(1+i)
$$

$$
\left(\sqrt{2} \cdot Z_{2}\right)^{2008}+\left(\frac{1}{2} Z_{1}\right)^{1429}+\left(\sqrt{2} Z_{3}\right)^{1962}=i \text { بين أن } 1
$$

3) عين التشابه S الذي مركزه O ويحول B إلى A (4) عين الدوران R الذذي مركزه O ويحول (5. C B إلى (OC) عين صورة المستّقيم (OC) بهذا الاوران. النتمرين 10 :
(1) $\ldots Z^{3}-(1+5 i) Z^{2}-9 Z-1+5 i=0$: نتبر المعادلة 1) بين أن هذه المعادلة تقبل حلا تخيليا صرفا

ومنه f تشابه مستوى مباشر نسبته $4 \sqrt{2}$ وزاويته $\frac{\pi}{4}$ ومركزه الثنقطة ω ذات اللاحقة
: f :
$|a|=4:|a|=\sqrt{(-2)^{2}+(-2 \sqrt{3})^{2}} \quad Z^{\prime}=a Z+b$. 4 . 4 (4 (

: مركز التشثابها

$$
Z_{0}=\frac{-2-i \sqrt{3}}{1+2+2 \sqrt{3} i} \text { : ومنه } Z_{0}=\frac{b}{1-a} \text { بركز الثشثابه و لامتتها }
$$

$$
\begin{aligned}
Z_{0} & =\frac{(-2-i \sqrt{3})(3-2 \sqrt{3 i})}{(3+2 \sqrt{3} i)(3-2 \sqrt{3} i)}: \text { as } Z_{0}=\frac{-2-i \sqrt{3}}{3+2 \sqrt{3} i} \\
Z_{0} & =\frac{-12+\sqrt{3} i}{21} \text { si } Z_{0}=\frac{-6+4 \sqrt{3} i-3 i \sqrt{3}-6}{9+12}
\end{aligned}
$$

$$
\mathrm{Z}_{0}=\frac{-4}{2}+\frac{\sqrt{3}}{2} i
$$

$$
\begin{aligned}
& Z_{0}=\frac{i}{-3-4 i} \quad Z_{0}=\frac{i}{1-4-4 i} \quad: \quad Z_{0}=\frac{b}{1-a} \\
& Z_{0}=\frac{-3 i-4}{9+16}: Z_{0}=\frac{i(-3+4 i)}{(-3-4 i)(-3+4 i)} \\
& \omega\left(\frac{-4}{25} ; \frac{-3}{25}\right): Z_{0}=\frac{-4}{25}-\frac{3}{25} i \quad \text { ومنه }: \text { وبالتالي }
\end{aligned}
$$

$$
a=2 e^{i \frac{\pi}{6}}: \quad a=2\left(\cos \frac{\pi}{6}+i \frac{\pi}{6}\right): \text { ومنه } a \text { الشثكل الأسي : لدينا }
$$

$$
\mathbf{Z}^{\prime}=2 \mathrm{e}^{i \frac{\pi}{2}} \mathbf{Z}+4-3 \sqrt{3}-i(2+\sqrt{3}): \text { وبالتّالي }
$$

ـ كتابة

$$
\mathbf{Z}^{\prime}=(\sqrt{3}+\mathbf{i}) \mathbf{Z}+4-3 \sqrt{3}-\mathbf{i}(2+\sqrt{3}) \quad:
$$

$$
x^{\prime}+i y^{\prime}=(\sqrt{3}+i)(x+i y)+4-3 \sqrt{3}-i(2+\sqrt{3}): \text { gمنه }
$$

$$
x^{\prime}+i y^{\prime}=x \sqrt{3}+i \sqrt{3} y+x i-y+4-3 \sqrt{3}-i(2+\sqrt{3})
$$

$$
x^{\prime}+\mathrm{iy}^{\prime}=x \sqrt{3}-\mathrm{y}+4-3 \sqrt{3}+\mathrm{i}(\mathrm{y} \sqrt{3}+x-2-\sqrt{3})
$$

$$
\left\{\begin{array}{l}
x^{\prime}=x \sqrt{3}-y+4-3 \sqrt{3} \\
y^{\prime}=x+y \sqrt{3}-2-\sqrt{3}
\end{array}\right.
$$

التمرين 3 :
$\mathbf{Z}^{\prime}=x^{\prime}+\mathrm{iy}^{\prime}$
ـ
$l^{\prime}=4(x-y)+i[4(x+y)+1]=4 x-4 y+i(4 x+4 y+1)$
$f^{\prime}=4 x-4 y+4 i x+4 i y+i=4 x+4 i y+4 i x-4 y+i$
$f^{\prime}=4(x+i y)+4 i x+4 i^{2} y+i=4 Z+4 i(x+i y)+i$
$Y^{\prime}=4 Z+4 i Z+i=(4+4 i) Z+i$
$\arg (\mathrm{a})=\frac{\pi}{4} \quad,|\mathrm{a}|=4 \sqrt{2} \quad \mathbf{Z}^{\prime}=\mathrm{aZ}+\mathrm{b} \quad: \quad$: طبيعة f

$$
\begin{gathered}
b=1-\frac{\sqrt{3}}{3}+\frac{1}{3} i-\frac{i \sqrt{3}}{3}+\frac{1}{3} \quad: \quad \\
b=\frac{4}{3}-\frac{\sqrt{3}}{3}+\left(\frac{2}{3}-\frac{\sqrt{3}}{3}\right) i=\frac{1}{3}[4-\sqrt{3}+i(2-\sqrt{3})]
\end{gathered}
$$

$$
\begin{array}{r}
\mathbf{Z}^{\prime}=\left(\frac{\sqrt{3}}{3}+\frac{1}{3} \mathbf{i}\right) \mathbf{Z}+\frac{1}{3}[4-\sqrt{3}+i(2-\sqrt{3})]:(\mathrm{l}(\mathrm{H}) \\
: f \text { الثنكل المركب للتحويل}
\end{array}
$$

$$
\mathbf{a}=\frac{1}{2}\left[\cos \left(\frac{-\pi}{4}\right)+i \sin \left(\frac{-\pi}{4}\right)\right] \quad \mathbf{Z}^{\prime}=\mathbf{a Z}+\mathbf{b}
$$

$$
b=(-1+2 i)\left(1-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right): 1+2 i=\frac{b}{1-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{4}}
$$

$$
b=-1-\frac{\sqrt{2}}{2}-i\left(\frac{3 \sqrt{2}}{2}+2\right) \quad \text { ومنه } b=-1+\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}+2 i-\sqrt{2} i-\sqrt{2}
$$

$$
Z^{\prime}=\frac{\sqrt{2}}{2}(1-i)-1-\frac{\sqrt{2}}{2}-i\left(\frac{3 \sqrt{2}}{2}+2\right)
$$

$: \mathbf{Z}$ a ب \mathbf{Z}^{\prime}
$\mathbf{Z}^{\prime}=x^{\prime}+i y^{\prime}=(a x-b y+\alpha)+i(b x+a y+\beta)$
$\mathbf{Z}^{\prime}=\mathbf{a x}-\mathbf{b y}+\alpha+\mathbf{i b x}+\mathbf{i a y}+\mathbf{i} \beta=\mathbf{a} x+i a y+i b x-b y+\alpha+i$
$Z^{\prime}=\mathbf{a} x+i a y+i b x-b y+\alpha+i \beta=a(x+i y)+i b x+i^{2} b y+\alpha+i \beta$

$$
\alpha+i \beta=a z+i b z+\alpha+i \beta
$$

ـ الشكل الانسي : : ال

$$
a=4 \mathrm{e}^{\frac{4 \pi}{3}} \quad a=4\left[\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right]: \text { ومنـ }
$$

$$
Z^{\prime}=4 e^{i \frac{4 \pi}{3}} Z-2-i \sqrt{3}: \text { وبالتالي }
$$

التمرين 5 :
 لدينا : $-3+5 i=a(5+i)+b: \quad$ ومنه $S(B)=B^{\prime}$ و $-11-14 i=a+b$
 $a=\frac{32-8 i+76 i+19}{16+1}=\frac{51+68 i}{17}:$ i' $^{\prime} \quad a=\frac{(-8-19 i)(-4+i)}{(-4-i)(-4+i)} \quad: \quad$ i
وبالتالي: أي : b=-11-14i-3-4i-14i-a و ولدينا: ba=3+4i-11
($\mathbf{Z}^{\prime}=\mathbf{a Z}+\mathbf{b}$ هيث

$$
a=\frac{2}{3}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)
$$

$$
a=\frac{\sqrt{3}}{3}+\frac{1}{3} i \quad: \quad a=\frac{2}{3}\left(\frac{\sqrt{3}}{2}+i \times \frac{1}{2}\right): \text { g g g g }
$$

$$
\text { ولدينا } \quad \mathrm{Z}_{0}=\frac{\mathbf{b}}{1-\mathbf{a}}: \text { ومنه لاحقة A } \mathrm{A}(\mathrm{~A})=\mathrm{A} \text { هي }
$$

$$
b=(1+i)\left(1-\frac{\sqrt{3}}{3}-\frac{1}{3} i\right) \quad 1+i=\frac{b}{1-\frac{\sqrt{3}}{3}-\frac{1}{3} i} \text { i }
$$

$$
\left\{\begin{array}{l}
x_{n}=2^{n} \cos \frac{5 \pi n}{6} \\
y_{n}=2^{n} \sin \frac{5 \pi n}{6}
\end{array} \quad: \dot{Z_{n}}=2^{n}\left(\cos \frac{5 \pi n}{6}+i \sin \frac{5 \pi n}{6}\right)\right.
$$

وبير هن بالتر اجع.

$$
\text { الـّمرين } 8 \text { : . }
$$

1- كتابة x, y و

2- طبيعة f : f هو تثثابه نسبة f : $\mathrm{k}=\mid 4 \mathrm{C}=4$ وزاويتة عمدة k أي زاوية $Z_{0}=\frac{2-8 i}{1-4 i}=\frac{2(1-4 i)}{1-4 i}: Z_{0}$ حيث $\frac{\pi}{2}$ ومركزه النقطّة ω ذات اللاحثة

$$
Z_{0}=2: \text { Un }
$$

مبيان أن g هو مركب تحويلين :
f f

$$
\begin{gathered}
\mathbf{M}(\mathbf{Z}) \xrightarrow{\mathrm{s}_{x}} \mathbf{M}_{1}\left(\mathbf{Z}_{1}\right) \xrightarrow{\mathrm{s}} \mathbf{M}^{\prime}\left(\mathbf{Z}^{\prime}\right) \\
\mathbf{Z}_{1}=\overline{\mathbf{Z}} \quad \mathbf{Z}^{\prime}=4 i \mathbf{Z}_{1}+\mathbf{2}-8 \mathrm{if}
\end{gathered}
$$

$$
S=f \text { g } \mathrm{g}=\mathrm{SoS}_{x} \text { : } \mathrm{Z}^{\prime}=4 \mathrm{i} \overline{\mathrm{Z}}+2-8 \mathrm{i} \quad \text { : Alay }
$$

$2 Z^{2}-(1+5 i) Z+2(i-1)=0$: 0 : 1 (المعادلة $\Delta=-8-6 i$: $\Delta=(1+5 i)^{2}-4 \times 2(2 i-2)$ نحسب الجذرين الترّبيميين للعدد المركب :

$$
\begin{aligned}
& \mathbf{Z}^{\prime}=\overline{\mathbf{Z}}: \text {; }
\end{aligned}
$$

$\mathbf{k}=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}} \quad \mathbf{Z}^{\prime}=(\mathbf{a}+\mathrm{ib}) \mathbf{Z}+\alpha+\mathrm{i} \beta$

$$
\alpha=\beta=0, b=-1, a=-\sqrt{3} \text {) } 2
$$

 مركز التششابه هو O وزاوية التششابه θ هي عمدة ($-\sqrt{3}$ (

$$
\theta=\frac{5 \pi}{6}:\left\{\begin{array}{l}
\cos \theta=\frac{-\sqrt{3}}{2} \\
\sin \theta=\frac{-1}{2}
\end{array}\right.
$$

$$
\mathbf{M}_{2}=f\left(\mathbf{M}_{1}\right) \quad, \quad \mathbf{M}_{1}=f\left(\mathbf{M}_{0}\right) \quad \text { : لدينا }
$$

$$
\mathbf{M}_{2}=(f 0 f)\left(\mathbf{M}_{0}\right) \quad \mathbf{M}_{2}=\boldsymbol{f}\left[f\left(\mathbf{M}_{1}\right)\right]: \text { : }
$$

$$
\mathbf{M}_{3}=\boldsymbol{f}\left[(f 0 f)\left(\mathbf{M}_{0}\right)\right] \quad \mathbf{M}_{3}=\boldsymbol{f}\left(\mathbf{M}_{2}\right): \text { وكلك }
$$

$\mathbf{M}_{\mathrm{n}}=(f 0 f 0 \ldots 0 f)\left(\mathbf{M}_{0}\right):$: $\mathbf{M}_{3}=[f 0(f 0 f)]\left(\mathbf{M}_{0}\right):$
 $\frac{5 \pi}{2} 3 \times \frac{5 \pi}{6}$ أي $3 \times 2^{3}=8$ وزاويته $f 0 f 0 f$ $\frac{5 \pi n}{2}$ وعليه : $f 0 f 0 \ldots 0 f$ هو تشابه نسبته

$$
Z_{n}^{\prime}=2^{n}\left(\cos \frac{5 \pi n}{6}+i \sin \frac{5 \pi n}{6}\right) Z_{0}:
$$

$$
\begin{gathered}
:\left(\frac{1}{2} Z_{1}\right)^{1429}=\cos \frac{2007 \pi}{2}+i \sin \frac{2007 \pi}{2} \\
\left(\frac{1}{2} Z_{1}\right)^{1429}=\cos \left(\frac{\pi}{2}+714 \pi\right)+i \sin \left(\frac{\pi}{2}+714 \pi\right) \\
\left(\frac{1}{2} Z_{1}\right)^{1429}=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=i \\
\sqrt{2} Z_{3}=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}: \quad: \sqrt{2} Z_{3}=i \quad \text { g و و } Z_{3}=\frac{\sqrt{2}}{2} i
\end{gathered}
$$

$$
\left(\sqrt{2} Z_{3}\right)^{1962}=\cos \frac{1962 \pi}{2}+i \sin \frac{1962 \pi}{2}=\cos 961 \pi+i \sin 961 \pi
$$

$$
=\cos (\pi+960 \pi)+i \sin (\pi+960)
$$

$$
\left(\sqrt{2} Z_{3}\right)^{1962}=\cos \pi+i \sin \pi=-1
$$

$\left(\sqrt{2} Z_{2}\right)^{2008}+\left(\frac{1}{2} Z_{1}\right)^{1429}+\left(\sqrt{2} Z_{3}\right)^{1962}=1+i-1=\mathbf{i}:$:
:

$i=a .(1+i): 2 i=a .\left(\frac{1}{2}\right)(1+i): Z_{1}=a Z_{2}$: \quad : \quad :
: أي أن : $a=\frac{i+1}{2} a=\frac{i(1-i)}{(1+i)(1-i)} \quad: \quad$ i \quad i $=\frac{i}{1+i} \quad:$: $k=|a|=\frac{1}{2} \times \sqrt{2}=\frac{\sqrt{2}}{2}:$ نسبة التشثابه $Z^{\prime}=\frac{1}{2}(1+i) Z$ Z $a=\frac{1}{2}(1+1)$
(3) و و (1) و (1) $\left\{\begin{array}{l}x^{2}-y^{2}=-8 \ldots(1) \\ 2 x y=-6 \ldots(2) \\ x^{2}+y^{2}=10 \ldots(3)\end{array}:\left\{\begin{array}{l}(x+i y)^{2}=-8-6 i \\ |\delta|^{2}=|\Delta|\end{array}\right.\right.$

$$
\text { نجد : } x=-1 \text { و } x=1 \text { ومنه } 2 x^{2}=2 \text { وعيه } x=1
$$

$$
y=3: x=-1 \text { ولما } y=-3: x=1 \text { ولما }
$$

$$
\delta_{2}=-1+3 i \quad, \quad \delta_{1}=1-3 i \quad \text { إن : } \Delta \text { له جذرين تربيعيين }
$$ للمعاددلة طلين متمايزين :

ومنه $Z^{\prime \prime}=\frac{1+5 i+1-3 i}{4} \quad, \quad Z^{\prime}=\frac{1+5 i-1+3 i}{4}$

$$
Z^{\prime \prime}=\frac{1}{2}+\frac{1}{2} i \quad, \quad Z^{\prime}=2 i:
$$

$$
\left(\sqrt{2} \cdot Z_{2}\right)^{2008}+\left(\frac{1}{2} Z_{1}\right)^{1429}+\left(\sqrt{2} \cdot Z_{3}\right)^{1962}=i \text { تبيان أن : }
$$

$$
\left\{\begin{array}{l}
\cos \theta=\frac{\sqrt{2}}{2} \\
\sin \theta=\frac{\sqrt{2}}{2}
\end{array} \quad Z_{2} \quad \text { عمد } \theta_{2} \cdot\left|Z_{2}\right|=\frac{\sqrt{2}}{2}: Z_{2}=\frac{1}{2}(1+i)\right.
$$

$$
\text { ومنه : } \mathrm{Z}_{2}=\frac{\sqrt{2}}{2}\left[\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right]: \theta_{2}=\frac{\pi}{4} \text { وعالتالي : }
$$

$$
\left(\sqrt{2} Z_{2}\right)^{2008}=1:\left(\sqrt{2} Z_{2}\right)^{2008}=\cos 502 \pi+i \sin 502 \pi
$$

$$
\frac{\pi}{2} \text { ومنه } Z_{1}=2 i
$$

$$
\frac{1}{2} Z_{1}=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2} \text { ! }
$$

$-i \beta^{3}+\beta^{2}+5 i \beta^{2}-9 i \beta-1+5 i=040$ - $i \beta^{3}+(1+5 i) \beta^{2}-9 i \beta-1+5 i=0$

$$
\beta^{2}-1+i\left(-\beta^{3}+5 \beta^{2}-9 \beta+5\right)=0: \text { وبالثالي }
$$

$$
\beta=-1 \text { g } \beta=1 \text { هل }\left\{\begin{array}{l}
\beta^{2}-1=0 \ldots(1) \\
-\beta^{3}+5 \beta^{2}-9 \beta+5=0
\end{array}\right.
$$

$$
Z_{0}=\mathrm{i} \text { : بح بالتُويض في (2) نجد : } \beta \text { بحقّ المعادلة .ومنه : } \beta=1
$$

(2) العبارة:

$$
a Z^{3}+b Z^{2}+c \mathbb{Z}-\mathbf{a i} \mathbb{Z}^{2}-b i \mathbf{Z}-\mathbf{c i}:(\mathbf{i}-\mathbf{i})\left(a Z^{2}+b Z+c\right)
$$

$$
a \mathbf{Z}^{3}+(\mathbf{b}-\mathbf{a}) \mathbf{Z}^{2}+(\mathbf{c}-\mathbf{b i}) \mathbf{Z}-\mathbf{c i}
$$

$$
\left\{\begin{array}{l}
a=1 \\
b=-1-4 i \\
c=-i-5
\end{array}:\left\{\begin{array}{l}
a=1 \\
b=-1-4 i \\
c=\frac{-1+5 i}{-i}
\end{array}:\left\{\begin{array}{l}
a=1 \\
b-a i=-1-5 i \\
c-b i=-9 \\
-c i=-1+5 i
\end{array}\right.\right.\right.
$$

(Z البه العبارة تصبح :
(Z-i) (Z)

$$
\mathbf{Z}^{2}-(1+4 i) \mathbf{Z}-\mathbf{i}-5=0 \text { g } \quad \mathbf{Z}-\mathbf{i}=0: \text { : }
$$

$$
Z^{2}-(1+4 i) Z-i-5=0 \quad \text { g } \quad Z=i \quad: \quad \text { w }
$$

$$
\mathbf{Z}^{2}-(1+4 i) \mathbf{Z}-\mathbf{i}-5=0 \text { : }
$$

$$
\theta=\frac{\pi}{4}:\left\{\begin{array}{l}
\cos \theta=\frac{\sqrt{2}}{2} \\
\sin \theta=\frac{\sqrt{2}}{2}
\end{array}: \text { زمنه }: \text { ز و وية التشابه } \theta\right. \text { هي : عمدة }
$$

4) R R تُيين اللدوران
 $\mathrm{a}=\frac{\sqrt{2} \mathrm{i}}{1+\mathrm{i}}$ ي $\frac{\sqrt{2}}{2} \mathrm{i}=\mathrm{a} \cdot \frac{1}{2}(1+i):$ وبالتّالي $\mathrm{Z}_{3}=a Z_{2}$ $Z^{\prime}=\frac{\sqrt{2}}{2}(1-i) Z: \quad: \quad \frac{\sqrt{2} i(1-i)}{(1+i)(1-i)} \doteqdot \frac{\sqrt{2}}{2}(1-i)$ $\theta^{\prime}=-\frac{\pi}{4}$ و والوية الدوران
5) صورة المستققيم (OC) بالودران : بما أن صورة المستقيم بالدوران هي مستقيم فإنتا نعين صورتي O وC بهغال الدوران .صورة النقطة O بهغا الدوران هي O لأن مركز الاوران هو O نعين صورة الثقطة C حيث لاحقتها $C^{\prime}\left(\frac{1}{2} ; \frac{1}{2}\right)$ j ومنه صورة المستّقيم (OC) هي المستقيم (OC' ${ }^{\prime}\left(\frac{1}{2} ; \frac{1}{2}\right)$ حيث $)$ (OC)

اللّمرين 10 ا

1) تبيان أن المعادلة تقّبل حلا تخيليا صرفا
$(i \beta)^{3}-(1+5 i)(i \beta)^{2}-9(i \beta)-1+5 i=0:$: $\mathbf{~} Z_{0}=i \beta$ ine
$a=\frac{-1}{2+2 i}=\frac{-1(2-2 i)}{(2+2 i)(2-2 i)}:$, $1=a(2+2 i):-4$

$$
\left\{\begin{array}{l}
\cos \theta=-\frac{\sqrt{2}}{2} \\
\sin \theta=\frac{\sqrt{2}}{2}
\end{array}\right.
$$

$$
\frac{3 \pi}{4} \text { 有 } \theta=\frac{3 \pi}{4}
$$

$$
\begin{aligned}
& \text { : } a=+\frac{1}{4}(-1+i): \text { وبالتالي } a=\frac{-2+2 i}{8}: 0 \\
& \text { : } \quad \text { : } b=\frac{1}{4}+\frac{5}{4} i \quad: \quad \text { أي } \mathrm{l}=\mathrm{i}-\mathrm{i}\left(\frac{-1}{4}+\frac{1}{4} i\right) \\
& Z^{\prime}=\frac{1}{4}(-1+i) Z+\frac{1}{4}+\frac{5}{4} i
\end{aligned}
$$

$$
\Delta=5+12 i \quad: \quad \Delta=(1+4 i)^{2}+4(i+5)
$$

نبيث عن الجذرين التزبيعيين للعدد $\delta^{2}=\Delta$ ليكن δ بذر تربيعي للعدد

$$
\left\{\begin{array}{l}
x^{2}-y^{2}=5 \ldots(1) \\
2 x y=12 \ldots(2) \\
x^{2}+y^{2}=13 \ldots(3)
\end{array} \quad: \quad \text { نرض } \delta=x+\text { iy } \delta=0\right. \text { iy }
$$

$$
\text { وعليه للمعادلة طلين متمايزين. } Z^{\prime \prime}=\frac{1+4 i+3+2 i}{2}, Z^{\prime}=\frac{1+4 i-3-2 i}{2}
$$

$$
Z^{\prime \prime}=2+3 i \quad, \quad Z^{\prime}=-1+i \quad i \quad \text { in }
$$

$$
Z_{2}=2+3 \mathbf{i}, Z_{1}=-1+\mathbf{i}, Z_{0}=\mathbf{i}:\left|Z^{\prime \prime}\right|=\sqrt{13} g\left|\mathbf{Z}^{\prime}\right|=\sqrt{2}
$$

بما أن \quad i $Z_{1}=a Z_{2}+b$: فبان $S(C)=B$ وبما أن \quad. \quad b = i - ia .
(3) $\ldots-1+i=a(2+3 i)+b$: $-1+i=a(2+3 i)+i-i a$: نعوض b بقيتها من (2) في (3) فنج

$$
\begin{aligned}
& \delta_{2}=-3-2 i \quad \text { g } \delta_{1}=3+2 i \cos
\end{aligned}
$$

: 3 :

 3- تُوريف و خو اص الجداء السلمي في الفضاء :

الجداء السنمي لشُعاعين الأي يحنوي على هذين الثشعاعين.

(ABC) إذا لم يكن للشعاهين

$$
\overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{A C}}=\mathbf{A B} \times \mathbf{A C} \times \cos \mathbf{B} \overline{\mathbf{A}} \mathbf{C}=\mathbf{A B} \cdot \mathbf{A H}:
$$ (AB) C C C (C هو المسقط العمودي للاققط -

$$
\begin{aligned}
& \overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{A C}}=\mathbf{A B} \cdot \mathbf{A C}: \text { : } \overrightarrow{\mathbf{A C}}, \overrightarrow{\mathbf{A B}} \text { نقس الاتجاه } \text {, } \\
& \overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{A C}}=-\mathbf{A B} \cdot \mathbf{A C}: \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{AB}} \text { : حختلفين في الاتجاه }
\end{aligned}
$$

$$
\text { - } \overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}} \quad \bullet \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}
$$

- $(\mathbf{k} \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}}=\mathbf{k} \cdot(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})=\overrightarrow{\mathbf{u}} \cdot(\mathbf{k} \overrightarrow{\mathbf{v}})$
(P) يسمى شعاع
(P) (لمستو

هِّ

1- مر اجعةّ الجداء اللسلمي في المستوى
: 1 فـر

-

$$
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}}=\|\overrightarrow{\mathbf{w}}\|^{2}\left(\begin{array}{l}
\text { المربع (السلمي) })--~
\end{array}\right.
$$

$$
\text { 1) إذا كان } \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\mathbf{A B} \cdot \mathbf{A H} \text { : في نفس الاتجاه }
$$

$$
\text { 2) إذا كان } \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=-\mathbf{A B} \cdot \mathbf{A H} \text { : مختلفين في الاتجاه فإن } \overrightarrow{\mathrm{AH}}, \overrightarrow{\mathrm{AB}}
$$

$$
\text { و في الحالتين : } \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{A H}}
$$

1) $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}} \cdot 2)(\mathbf{k} \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}}=\mathbf{k}(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})$
2) $\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$
3) $(\vec{u}+\overrightarrow{\mathbf{v}})^{2}=\overrightarrow{\mathbf{u}}^{2}+2 \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{v}}^{2}:$:نائج
4) $(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}})^{2}=\overrightarrow{\mathbf{u}}^{2}-2 \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{v}}^{2}$
5) $(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}})=\overrightarrow{\mathbf{u}}^{2}-\overrightarrow{\mathbf{v}}^{2}$

مبر هنة 3 :
 $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathrm{v}}=x x^{\prime}+\mathrm{yy}^{\prime}:$: على اللترتيب:

$$
\|\overrightarrow{\mathbf{u}}\|=\sqrt{x^{2}+\mathbf{y}^{2}} \quad: \text { نتيجة }
$$

$$
\text { تصريف } 2 \text { : }
$$

 كان الشعاع (. $a x+b y+c=0$
 $\frac{|\mathrm{a} \alpha+\mathrm{b} \beta+\mathrm{c}|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}:$ تعطى بالعبارة ax+by+c=0

في الفضاء المنسوب اللى معلم متعامد متجانس ($(0 ; \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}})$

$$
\mathbf{M H}=\mathbf{d}=\frac{|\mathbf{a} \alpha+\mathbf{b} \beta+\mathbf{c} \gamma+d|}{\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{c}^{2}}}
$$

-

. $(0 ; \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}})$ الفضاء منسوب إلى معلم متعامد متجانس 1- بين أن الثقط $\mathbf{~ ا ل ث ط ~} \mathbf{~ ت ع ي ن ~ م س ت و ي ا ~ و ~ ح ي ه ا . ~}$
 التالـرين 2 :
($(0 ; \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}})$ نقبر النقطة

$$
\text { . } \overrightarrow{\mathbf{u}}(-4 ; 2 ; 1) \text { A }(1 ; 2 ;-3)
$$

 (2) أحسب المسافة بين اللنقطة (
$(0 ; \vec{i}, \vec{j}, \vec{k})$ اللil
 . (D) و B B (B (B ; -2; 2)

الـالـرين 4 :
Cm وحدة القياس هي (0; $\mathbf{~ ه ي ~}$ $\mathrm{D}(2 ; 1 ; 5), \mathrm{C}(2 ; 3 ; 3), \mathrm{B}(-1 ; 4 ; 1), \mathrm{A}(1 ; 0 ;-1):$: 1 , (ABC) (

 6) أحسب حجم رباعي الأوجه ABCD.

في الفضاء المنسوب إلى معلم متعامد متجانس $(0 ; \vec{i}, \vec{j}, \vec{k})$ $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=x x^{\prime}+\mathbf{y} y^{\prime}+z z z^{\prime}: ل د \overrightarrow{\mathbf{v}}\left(x^{\prime} ; y^{\prime} ; z^{\prime}\right), \overrightarrow{\mathbf{u}}(x ; y ; z)$ ملاحظات :

$$
\|\overrightarrow{\mathbf{u}}\|=\sqrt{x^{2}+y^{2}+z^{2}}: \quad: \operatorname{dig} \quad\|\overrightarrow{\mathbf{u}}\|^{2}=x^{2}+y^{2}+z^{2}
$$

! $\mathrm{AB}=\sqrt{\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}+\left(z_{1}-z_{0}\right)^{2}} \quad$ تعططى بالوبارة B 5- المعادلة الدايكارتبة لمستو في معلم منعامد متجانس :

$$
\text { تعريف } 7 \text { : }
$$

نسمي معادلة ديكارتية لمستو (P) اللعلاقة المحققة فقط من أجل إحداثشيات كل نقط P. مثال : في الفضاء المنسوب إلى معلم متعامد متجانس ($0 ; \vec{i}, \vec{j}, k)$. $\mathbf{z}=\mathbf{0}$: حيث $\mathbf{M}(x ; y ; z)$ (
 مبر هنة 7 :
الفضضاء منسوب إلى معلم متعامد متجانس (0; الفضاء و يعامد الشعاع
 و العكس كل معادلة هن الشكل : حيث ax + by + cz+d=0 و غير معدومة جميعا هي معادلة لمستو حيث (

تعريف 8 :
نسمي المسافة بين نقطة M و مستقيم (D) أو مستو (P) طول القطعة [MH]

$$
\text { مبر هنة } 8 \text { : }
$$

1- تبيان أن النقط C, B A تعين مستويا :

 ر عليه فهي تتشكل مستويا وحيدا ((ABC) 2- تبيان أن (ABC) عمودي على المستوى $\overrightarrow{\mathbf{u}}(2 ; 6 ; 8)$ $\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{AB}}=2(2)+6(-2)+8(1)=0$
$\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{AC}}=2(1)+6(1)+8(-1)=0$
رمنه الشعاع II عمودي على المستوى (ABC) .
(1) المستوى (P) هو مجموعة النقط $\mathbf{~ (~}$ $\overrightarrow{\mathbf{A M}} \cdot \overrightarrow{\mathbf{u}}=\mathbf{0}$ $\overrightarrow{\mathbf{u}}(-4 ; 2 ; 1), \overrightarrow{\mathbf{A M}}(x-1 ; y-2 ; z+3)$, $-4 x+4+2 y-4+z+3=0$ ي $-4(x)+2(y-2)+z+3=0$:

$$
-4 x+4+2 y-4+z+3=0
$$

| عليه معادلة المستوى (P) هي :

$$
d=\frac{-4(-1)+2(1)+1+3}{\sqrt{(-4)^{2}+(2)^{2}+(1)^{2}}} \quad:(P), C \text { C }
$$

$$
d=\frac{4+2+4}{\sqrt{16+4+1}}=\frac{10}{\sqrt{21}}=\frac{10 \sqrt{21}}{21}
$$

 $\overrightarrow{\mathbf{u}}(-1 ; 2 ;-2), \overrightarrow{\mathrm{AB}}(1 ;-3 ; 3)$ प्या

$\overrightarrow{M A} \cdot \overrightarrow{M B}=\frac{1}{4} A B^{2}$ من ماهي المجموعة 2
 MA
$C \in \mathbb{R}, \mathbf{A (c ; 2 ; 1)} \mathbf{C x + y + z - 3 = 0} 0$ النقطة $\mathbf{C x}$ (P)
 التمرين 7 :
نتبّر الأشعة، :
عين قيمة x بحيث يكون الشعاع
نعتبر الفضاء المزود بمعلّمتعامد متجانس (0) $\overrightarrow{\mathrm{w}}\left(\frac{-9}{11} ; \frac{6}{11} ; \frac{2}{11}\right), \overrightarrow{\mathrm{v}}\left(\frac{6}{11} ; \frac{7}{11} ; \frac{6}{11}\right), \overrightarrow{\mathrm{u}}\left(\frac{2}{11} ; \frac{6}{11} ; \frac{-9}{11}\right)$ $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}, \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}, \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$) أحسب كل من |l (3) هل اللمعلم (
ليكن (P) المستوى الذي معادلته :
 2- أحسب المسافةَ بين النقطة (C التمرين 10 :
في الفضاء المنسوب إلى معلم متعامد متجانس ($0 ; \vec{i}$ نتبّر النقط

$$
C(0 ; 1 ;-2), B(-5 ; 2 ; 1), A(-1 ; 2 ; 3)
$$

AM, $\overrightarrow{\mathrm{BC}}=-4$ بحيث $\mathbf{~ (2) ~ ع ن ~ ا ل م ع ا د ل ة ~ ا ل د ي ك ا ر ت ب ة ~ ل ل م ج م و ع ة ~}$

5
 DI $=\frac{4 \sqrt{3}}{3} C m$ هي $(\mathrm{ABC}) و \mathrm{D}$ ومنه المسافةة بين DI $=\frac{|2+1-5-2|}{\sqrt{(1)^{2}+(1)^{2}+(-1)^{2}}}=\frac{4}{\sqrt{3}}$

$$
V=\frac{5 \times 3 \times 4}{3}=20 \mathrm{Cm}^{3} \quad: \quad \text { وبالتّالي } V=\frac{1}{3} \times 5 \sqrt{3} \times \frac{4 \sqrt{3}}{3}
$$

\qquad $\overrightarrow{\mathbf{M A}} \cdot \overrightarrow{\mathbf{M B}}=0$

ومنـه هن جهوه

$$
|\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{u}}|=|(-1)(1)+2(-3)+(-2)(3)|=|-13|=13 \ldots(1)
$$

$$
|\overrightarrow{\mathbf{A B}} \cdot \overrightarrow{\mathbf{u}}|=|\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{A B}}|=\|\overrightarrow{\mathbf{u}}\| \cdot \mathbf{A H} \quad \text { ومن جهة أخرى : وعيه }
$$

$$
|\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{u}}|=\sqrt{(-1)^{2}+(2)^{2}+(2)^{2}} \times \mathrm{AH}=3 \cdot \mathrm{AH} \ldots(2)
$$

$$
\text { من (1) و (2) : } \mathbf{A H}=\frac{13}{3}: \text { وعليه }
$$

$$
\mathrm{AB}^{2}=\mathrm{AH}^{2}+\mathrm{BH}^{2} \text { : القانم في H } \mathrm{H} \text { :لينا } \mathrm{ABH} \text { في المثلث }
$$

$$
\mathrm{AB}^{2}=(1)^{2}+(-3)^{2}+(3)^{2}=19: \mathrm{BH}^{2}=\mathrm{AB}^{2}-\mathbf{A H}^{2}: \text { :كنه }
$$

$$
\text { BH= } \frac{\sqrt{2}}{3} \mathrm{BH}^{2}=\frac{2}{9}: \text { ومثيه } \mathrm{BH}{ }^{2}=19-\left(\frac{13}{3}\right)^{2}=19-\frac{169}{9} \text { ومنه }
$$

$\overrightarrow{\mathrm{AC}}(1 ; 3 ; 4), \overrightarrow{\mathrm{AB}}(-2 ; 4 ; 2)$ ديان ABC بيان أن :
$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{u}}=(-2) \times 1+4 \times 1+2 \times(-1)=-2+4-2=0$

$$
\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{v}}=1 \times 1+3 \times 1+4(-1)=0
$$

ومنه
فهو عمودي علّى المستوى (ABC) .
2- الستنتّاج معادلة (ABC)
المستوى (ABC) هو مجموعة النقط (AB $)$ (
$1(x-1)+1 \cdot y+(-1)(z+1)=0 \quad: \quad \underset{\sim}{\operatorname{din}}(x-1, y, z+1) \quad, \overrightarrow{\mathbf{A M}} \cdot \overrightarrow{\mathbf{u}}=0$
$x+y-z-2=0 \quad: \quad: x-1+y-z-1=0 \quad:$
3- تبيان أن ABCD هو رباعي أوجه :
 ومنه : D ليست نقطة من (ABC) وبالتّالي ABCD هو رباعي وجوه.

4- مساحة المثلث ABC : لدينا $|\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{BA}}|=\mathrm{BC} \cdot \mathrm{BH}=\mathrm{BH} \cdot \sqrt{14} \ldots$ (1)
$\overrightarrow{\mathrm{BC}}=\sqrt{(3)^{2}+(-1)^{2}+(2)^{2}}=\sqrt{14} \quad:$ حيث :
ومن جهة أخرى :لدينا :

$$
\begin{aligned}
& |\overrightarrow{\mathbf{B C}} \cdot \overrightarrow{\mathbf{B A}}|=|3 \times 2+(-1)(-4)+2(-2)|=6 \ldots(2) \\
& \mathrm{BH}=\frac{6}{\sqrt{14}}: \text { ومنه } \mathrm{BH} \cdot \sqrt{14}=6 \text { : } \\
& \text { (2) (1) و (1) } \\
& \mathrm{AB}^{2}=(-2)^{2}+(4)^{2}+2^{2} \underset{\mathrm{HH}}{\mathrm{BH}}=\frac{3 \sqrt{14}}{7} \text { أي } \mathrm{BH}=\frac{6 \sqrt{14}}{14} \text { :ي } \\
& \text { ومنه : } \mathbf{A H}^{2}=\mathbf{A B}^{2}-\mathbf{B H}^{2} \text { وعايه } \mathbf{A B}^{2}=24 \text { (} \\
& \mathrm{AH}^{2}+(24)-\left(\frac{3 \sqrt{14}}{7}\right)^{2}=24-\frac{126}{49}=\frac{1050}{49} \\
& \frac{\sqrt{1050}}{7} \mathrm{Cm} \text { و } \mathrm{ABC} \text { ومنه ارتفاع المثثت } \mathrm{AH}=\frac{\sqrt{1050}}{7} \\
& S=\frac{B C \cdot \mathbf{A H}}{2}=\frac{\sqrt{1050} \times \sqrt{14}}{2 \times 7}: \text { هي } \mathrm{A} \text { : مساحة المثلث } S \text { 埌 } \\
& \text { AH } \mathbf{~ و ب ا ل ث ن ا ل ي : ~} \\
& S=\frac{\sqrt{14700}}{14}=\frac{10 \sqrt{147}}{14}=\frac{5 \sqrt{147}}{7}=\frac{5 \times 7 \sqrt{3}}{7} \\
& \mathrm{~S}=5 \sqrt{3} \mathrm{Cm}^{2} \quad \text { : }
\end{aligned}
$$

وعليه $\overrightarrow{\mathrm{MI}} \cdot \overrightarrow{\mathrm{IA}}=\frac{1}{8} \mathrm{AB}^{2}$: $4 \times \overrightarrow{\mathrm{MI}} \cdot \overrightarrow{\mathrm{IA}}=\frac{1}{2} \mathrm{AB}^{2}$

$$
\overrightarrow{\mathrm{MI}} \cdot \overrightarrow{\mathbf{I A}}=\frac{1}{2} I A^{2} \mathbf{~} \overrightarrow{\mathrm{MII}} \cdot \overrightarrow{\mathbf{I A}}=\frac{1}{8} \cdot(2 \mathbf{I A})^{2}
$$

$$
p^{2}-9 p-18=0: \text { نجد } c^{2}=p \text { بوض } c^{4}-9 c^{2}-18=0
$$

$$
\Delta=153 \text { ومنه } \Delta=(-9)^{2}-4(-18)
$$

$p_{2}=\frac{9+3 \sqrt{17}}{2} \quad, \quad p_{1}=\frac{9-3 \sqrt{17}}{2}:$:

$$
C^{2}=\frac{9+3 \sqrt{17}}{2} \quad \text { مرفوض . وعليه } p_{1}<0=p
$$

$$
C=-\sqrt{\frac{9+3 \sqrt{17}}{2}} \text {, } C=\sqrt{\frac{9+3 \sqrt{17}}{2}}
$$

: 7 infall
$\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{u}}=1 \times 1+2 \times 1+x \times 1=3+x$
$\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathrm{u}}=1 \times 13+2(-2)+x \times 3=3 x+9$
:

$$
x=-3:\left\{\begin{array}{l}
x+3=0 \\
3 x+9=0
\end{array}\right.
$$

$$
\begin{aligned}
& d=\frac{c^{2}}{\sqrt{c^{2}+2}}: \log d=\frac{|c \cdot c+2+1-3|}{\sqrt{c^{2}+(1)^{2}+(1)^{2}}}
\end{aligned}
$$

$(\overrightarrow{\mathrm{MI}}+\overrightarrow{\mathrm{IA}}) \cdot(\overrightarrow{\mathrm{MI}}-\overrightarrow{\mathrm{IA}})=0$ ومنه

 وعليه: $\quad \overrightarrow{M A} \cdot \overrightarrow{M B}=\frac{1}{4} \mathbf{A B}^{2} \quad \mathbf{E}_{2} \quad$ لديينا $(\overrightarrow{\mathbf{M I}}+\overrightarrow{\mathbf{I A}}) \cdot(\overrightarrow{\mathbf{M I}}-\overrightarrow{\mathrm{IA}})=\frac{1}{4} \mathrm{AB}^{2} \quad: \quad \mathrm{s}(\overrightarrow{\mathrm{MI}}+\overrightarrow{\mathrm{IA}}) \cdot(\overrightarrow{\mathbf{M I}}+\overrightarrow{\mathbf{I B}})=\frac{1}{4} \mathrm{AB}^{2}$ وعليه: $\mathbf{M I}^{2}=\mathbf{I} \mathbf{A}^{2}+\frac{1}{4} \mathbf{A B} \mathbf{B}^{2}$: $\mathbf{M} \mathbf{N I}^{2}-\mathbf{I} \mathbf{A}^{2}=\frac{\mathbf{1}}{4} \mathbf{A B} \mathbf{B}^{2}$ $I M^{2}=\frac{1}{2} \mathrm{AB}^{2}$ وبالتالي $\mathrm{MI}^{2}=\left(\frac{1}{2} \mathrm{AB}\right)^{2}+\frac{1}{4} \mathrm{AB}^{2}$ و $(\overrightarrow{\mathbf{M}}+\overrightarrow{\mathbf{I A}})^{2}+(\overrightarrow{\mathbf{M}}+\overrightarrow{\mathrm{IB}})^{2}=\mathrm{AB}^{2}: \mathbf{M} \mathbf{M A}^{2}+\mathbf{M B}^{2}=\mathbf{A B}^{2}:$ ت تييين

$$
\text { وعليه }(\overrightarrow{\mathbf{M I}}+\overrightarrow{\mathbf{I A}})^{2}+(\overrightarrow{\mathbf{M I}}-\overrightarrow{\mathbf{I A}})^{2}=\mathbf{A B}^{2} \text { : }
$$

s) $\overrightarrow{\mathrm{MI}}^{2}+2 \overrightarrow{\mathbf{M I}} \cdot \overrightarrow{\mathbf{I A}}+\mathbf{I A ^ { 2 }}+\mathrm{MI}^{2}-2 \overrightarrow{\mathrm{MI}} \cdot \overrightarrow{\mathrm{IA}}+\mathbf{I A}^{2}=\mathrm{AB}^{2}$

$$
2 \mathbf{M I}^{2}=\mathbf{A B}^{2}-2 \mathbf{I A}^{2}: 2 \mathbf{M I}^{2}+2 \mathbf{I A}^{2}=\mathbf{A B}^{2}
$$

$M I^{2}=\frac{1}{2} A B^{2}-I A^{2}=\frac{1}{2} A B^{2}-\left(\frac{1}{2} A B\right)^{2}=\frac{1}{2} A B^{2}-\frac{1}{4} A B^{2}$
إذن :

: ويالتالي : $(\overrightarrow{\mathrm{MI}}+\overrightarrow{\mathrm{IA}})^{2}-(\overrightarrow{\mathrm{MI}}+\overrightarrow{\mathrm{IB}})^{2}=\frac{1}{2} \mathrm{AB}^{2}$
: أي أن $(\overrightarrow{\mathbf{M I}}+\overrightarrow{\mathbf{I A}})^{2}-(\overrightarrow{\mathbf{M I}}-\overrightarrow{\mathbf{I A}})^{2}=\frac{1}{2} \mathbf{A B}^{2}$
$M I^{2}+2 \overrightarrow{M I} \cdot \overrightarrow{I A}+I A^{2}-\left(M I^{2}-2 \overrightarrow{M I} \cdot \overrightarrow{I A}+I A^{2}\right)=\frac{1}{2} A B^{2}$
$\overrightarrow{\mathrm{MB}}(-5-x ; 2-\mathrm{y} ; 1-\mathrm{z}), \overrightarrow{\mathrm{MA}}(-1-x ; 2-\mathrm{y} ; 3-\mathrm{z})$
$\mathrm{MA}^{2}=(-1-x)^{2}+(2-y)^{2}+(3-z)^{2}$
$\mathrm{MA}^{2}=1+2 x+x^{2}+4-4 y+y^{2}+9-6 z+z^{2}$
$\mathrm{MA}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+2 \mathrm{x}-4 \mathrm{y}-6 \mathrm{z}+14$
$M B^{2}=(-5-x)^{2}+(2-y)^{2}+(1-z)^{2}$
$M B^{2}=25+10 x+x^{2}+4-4 y+y^{2}+1-2 z+z^{2}$
$\mathrm{MB}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+10 x-4 \mathrm{y}-2 \mathrm{z}+30$

$$
2 \mathbf{M A}^{2}+3 \mathbf{M B}^{2}=5
$$

$2\left(x^{2}+y^{2}+z^{2}+2 x-4 y-6 z+14\right):$ ومنه
$+3\left(x^{2}+y^{2}+z^{2}+10 x-4 y-2 z+30\right)=5$
وعليه $5 x^{2}+5 y^{2}+5 z^{2}+34 x-20 y-18 z+118=5$
$x^{2}+y^{2}+z^{2}+\frac{34}{5} x-4 y-\frac{18}{5} z+\frac{118}{5}=5$
$\left(x+\frac{17}{5}\right)^{2}-\left(\frac{17}{5}\right)^{2}+(y-2)^{2}-(2)^{2}+\left(z-\frac{9}{5}\right)^{2}-\left(\frac{9}{5}\right)^{2}+\frac{118}{5}=5$
$\left(x+\frac{17}{5}\right)^{2}+(y-2)^{2}+\left(z-\frac{9}{5}\right)^{2}=\frac{289}{25}+4+\frac{81}{25}-\frac{118}{5}+5$
$\left(x+\frac{17}{5}\right)^{2}+(y-2)^{2}+\left(z-\frac{9}{5}\right)^{2}=\frac{289+100+81-590}{25}+5$
$\left(x+\frac{17}{5}\right)^{2}+(y-2)^{2}+\left(z-\frac{9}{5}\right)^{2}=\frac{-120+125}{25}$
$\left(x+\frac{17}{5}\right)^{2}+(y-2)^{2}+\left(z-\frac{9}{5}\right)^{2}=\frac{1}{5}$

$$
\|\overrightarrow{\mathrm{U}}\|=\sqrt{\left(\frac{2}{11}\right)^{2}+\left(\frac{6}{11}\right)^{2}+\left(\frac{-9}{11}\right)^{2}}=\sqrt{\frac{4+36+81}{121}}=\sqrt{\frac{121}{121}}=1
$$

$$
\|\overrightarrow{\mathrm{v}}\|=\sqrt{\left(\frac{6}{11}\right)^{2}+\left(\frac{7}{11}\right)^{2}+\left(\frac{6}{11}\right)^{2}}=\sqrt{\frac{36}{121}+\frac{49}{121}+\frac{36}{121}}=\sqrt{\frac{121}{121}}=1
$$

$$
\|\overrightarrow{\mathrm{v}}\|=\sqrt{\left(\frac{-9}{11}\right)^{2}+\left(\frac{6}{11}\right)^{2}+\left(\frac{2}{11}\right)^{2}}=\sqrt{\frac{81}{121}+\frac{36}{121}+\frac{4}{121}}=\sqrt{\frac{121}{121}}=1
$$

$$
\overrightarrow{\mathrm{U}} \cdot \overrightarrow{\mathrm{v}}=\frac{2}{11} \times \frac{6}{11}+\frac{6}{11} \times \frac{7}{11}+\left(\frac{-9}{11}\right) \times \frac{6}{11}=\frac{12+42-54}{121}=0(2
$$

$$
\overrightarrow{\mathrm{U}} \cdot \overrightarrow{\mathrm{w}}=\frac{2}{11} \times\left(\frac{-9}{11}\right)+\frac{6}{11} \times \frac{6}{11}+\left(\frac{-9}{11}\right) \times\left(\frac{2}{11}\right)=\frac{-18+36-18}{121}=0
$$

$$
\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}=\frac{6}{11}+\left(\frac{-9}{11}\right)+\frac{7}{11} \times \frac{6}{11}+\frac{6}{11} \times \frac{2}{11}=\frac{-54+42+12}{121}=0
$$

$$
\overrightarrow{\mathbf{U}} \perp \overrightarrow{\mathbf{w}}, \overrightarrow{\mathbf{U}} \perp \overrightarrow{\mathbf{V}},\|\overrightarrow{\mathbf{U}}\|=\|\overrightarrow{\mathbf{v}}\|=\|\overrightarrow{\mathbf{W}}\|=1 \quad \text { (3) بما انـ }
$$

المان المعلم متعامد متجانس.
1-معاددة (P) :
(الشعاع: (P) (وبما أن (P (P يوازي

$$
\text { إنن معادلة (} x-2 y+4 z+1=0: \text { هي }
$$

2- المسافة بين C
$d_{1}=\frac{5 \sqrt{21}}{7}$ ي $d_{1}=\frac{|1-2(-2)+4(3)-2|}{\sqrt{(1)^{2}+(-2)^{2}+(4)^{2}}}=\frac{15}{\sqrt{21}}=\frac{15 \sqrt{21}}{21}$
:
$d_{2}=\frac{6 \sqrt{21}}{7}$ of $d_{2}=\frac{|1-2(-2)+4(3)+1|}{\sqrt{(1)^{2}+(-2)^{2}+(4)^{2}}}=\frac{18}{\sqrt{21}}=\frac{18 \sqrt{21}}{21}$

14- المستقيمات و ألمستويات في الفضاءو
تعريف 1-1 الْنذكير بالمرجح : 1
$\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$: نسمي مرجح النقط : $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{\mathrm{n}}$: بيث 0 بي

$$
\left\{\left(\mathbf{A}_{1}, \alpha_{1}\right) ;\left(\mathbf{A}_{2}, \alpha_{2}\right) ; \ldots ;\left(\mathbf{A}_{n}, \alpha_{n}\right)\right\}
$$

$$
\alpha_{1} \overrightarrow{\mathbf{M A}}_{1}+\alpha_{2} \overrightarrow{\mathbf{M A}}_{2}+\ldots+\alpha_{\mathrm{n}} \overrightarrow{\mathbf{M A}}_{\mathrm{n}}=\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}\right) \overrightarrow{\mathbf{M G}}
$$

$$
\text { مجموعة مر اجج الجملة } \begin{aligned}
\beta+\alpha \neq 0 \\
\hline
\end{aligned}
$$ مجموعة مراجح الجملة ه

 الـتّبقيتين.

$$
\text { . } \alpha+\beta+\gamma \neq 0 \text {. }
$$

(ABC) مجموعة مراجح الجمثة
مجموعة مراجح الجملة

 $(0 ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}, \overrightarrow{\mathrm{k}})$)

ومنه
E2
$\overrightarrow{\mathrm{BC}}(5 ;-1 ;-3), \overrightarrow{\mathrm{AM}}(x+1 ; y-2 ; z-3):$:لدينا $: \mathbf{M}(x ; y ; z)$. $\overrightarrow{\mathrm{AM}} \cdot \overrightarrow{\mathrm{BC}}=5(x+1)+(\mathrm{y}-2)(-1)+(\mathrm{z}-3)(-3) \quad: \quad$ ولدينا $=5 x+5-y+2-3 z+9=5 x-y+2 z+16$
$5 x-y-2 z+16=-4$: فان $\overrightarrow{\text { AM }} \cdot \overrightarrow{B C}=-4$: وعله : بما أن

$$
5 x-y-2 z+20=0: \text { : }
$$ ومنه

($\mathrm{A}(\alpha ; \beta ; \gamma)$: المعادلة الديكارتية لمستو

$$
\text { مبر هنة } 6 \text { : }
$$

 نـظمي لها المستّوي

$$
\text { مبر هـة } 7 \text { : }
$$

 $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0:$:
 $\mathbf{a}^{\prime}=\mathbf{k a} \quad, \mathbf{b}^{\prime}=\mathbf{k b} \quad, \mathbf{c}^{\prime}=\mathbf{k c}$ وفي الحالات الأخرى (P) و (P) منتقاطعان.
 لِي الفضاء المستقِم ليس له معادلـة ديكارتية

$$
\text { . } t \text { عده حقيقي } t=\begin{aligned}
& x=\mathbf{a t}+\alpha \\
& y=b \mathbf{t}+\beta \\
& z=\mathbf{c t}+\gamma
\end{aligned}
$$

$$
\text { نتريف } 2 \text { : }
$$

العلاقَات :

تنشكل تمثيلا وسيطيا للمستقيم الذي يشمل النقطة و شعاع $\quad\left\{\begin{array}{l}x=a t+\alpha \\ y=b t+\beta \\ z=c t+\gamma\end{array}\right.$
توجيهه
$\mathrm{A}(\alpha ; \beta ; \gamma)$ ليكن الثشعاعان

$$
\text { وليكن المستوي (P) المزود بمعلم (A } ; \overrightarrow{\mathbf{u}} ; \overrightarrow{\mathbf{v}})
$$

$$
\text { عد } \mathbf{t}^{\prime}, \mathbf{t} \text { حددان حقيقيان. }\left\{\begin{array}{l}
x=\mathbf{a} \mathbf{t}+\mathbf{a}^{\prime} \mathbf{t}^{\prime}+\alpha \\
\mathbf{y}=\mathbf{b} \mathbf{t}+\mathbf{b}^{\prime} \mathbf{t}^{\prime}+\beta \\
z=\mathbf{c t}+\mathbf{c}^{\prime} \mathbf{t}^{\prime}+\gamma
\end{array}\right.
$$

$$
\text { تعريف } 3 \text { : }
$$

$$
\begin{aligned}
& \text { فمثثلا : تشكل تمثيلا وسيطيا للمستقيم الخي يشمل النقطة }\left\{\begin{array}{l}
x=2 t+3 \\
y=-5 t-4 \\
z=-\frac{1}{2} t+1
\end{array}\right. \\
& \overrightarrow{\mathbf{u}}\left(2 ;-5 ; \frac{1}{2}\right) \text { وشعاع توجيهه } \mathrm{A}(3 ;-4 ; 1)
\end{aligned}
$$

يعطى الثمثيّل الوسبطي للمستوى (P) و المستقيم (P) كمايـي :
(D) وين - (D) (P) $\left\{\begin{array}{l}x=t-1 \\ y=-t+4 \\ z=2 t+3\end{array} .(P)\left\{\begin{array}{l}x=3 u-2 v-4 \\ y=5 u-4 v+1 \\ z=-2 u+2 v-3\end{array}\right.\right.$

$\left(P_{1}\right): x+4 y-z=0 ;\left(P_{3}\right): x+2 y-z-4=0 ;\left(P_{2}\right): x+y+z-6=0$
. عين نقط تقاطعهما التّمرين 8 :

$$
\left\{\begin{array}{l}
x=-u+2 v-1 \\
y=u-v \\
z=-2 u+v-1
\end{array},\left\{\begin{array}{l}
x=t-t^{\prime}+1 \\
y=-t+2 t^{\prime} \\
z=2 t-t^{\prime}-1
\end{array}:\left(P^{\prime}\right) و(P)\right. \text { (P) }\right.
$$ التُرين 9 :

(A, معلم للفضاء. $2 x+4 y+2 z-1=0$: مستو معادلته (P)
) عين نقط تقاطع المستوى (P) مع الحروف (P) (3 . ABCDEFGH المستقْمين $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}, \overrightarrow{\mathrm{k}})$) : المعر فين بتمثيلهمما الوسيطيين ($\left(D_{2}\right)$ و $)\left(D_{1}\right)$

$$
\left(D_{1}\right):\left\{\begin{array}{l}
x=-t+3 \\
y=t+1 \\
z=2 t-2
\end{array} \quad\left(D_{2}\right):\left\{\begin{array}{l}
x=t^{\prime}+5 \\
y=t^{\prime}+3 \\
z=-t^{\prime}-5
\end{array}\right.\right.
$$

 (P) (P) اسيتّج المعادلة الديكارتبة للمستو،

في الفضاء المنسوب إلى معلم $(\mathbf{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}, \overrightarrow{\mathrm{j}}$ النقط
$\mathbf{C}(-1 ; 2 ;-2), B(2 ;-2 ; 4), A(-2 ;+1 ;-3)$

 التّمرين 2 :

 في الفضاء المنسوب إلى مطلم متعامد متجانس (O; $\overrightarrow{\text { it }}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}})$ نعبر النقط : $\overrightarrow{\mathbf{u}}(-1 ;-2 ;-3)$) $\mathrm{C}(-1 ; 3 ;-1), \mathrm{B}(2 ; 3 ;-2), \mathrm{A}(-1 ;-1 ;-1)$

1- أكتب تمثيلا وسيطيا اللمستّوى (OAB)

3- عين نقط تقاطع المستوى (OAB) و المستوى (P) التّمرين 4 :

1) عين المعادلة الديكارتية للمستوى (P) الذي يشمل النقطة O يكون (P) ناظمي له

$$
\overrightarrow{\mathrm{v}}(1 ;-1 ; 3) \quad \overrightarrow{\mathrm{u}}(-1 ; 1 ; 4) \text { توجيهه }
$$

3- استنتج المعادلة اللايكارتية للمستوى (P) 4- عين نقط تقاطع (P) و (P) باستعمال المعادلتين الالديكارتيتين. التّمرين 5 :ـ
 (P') عين التمثيل الوسيطي لمستقّيم تقاطع (P) $-2 x+3 y-z+2=0$

1. $\overrightarrow{\mathbf{A M}}=\mathbf{t} \cdot \overrightarrow{\mathbf{A B}}: \overrightarrow{\text { نكون نقطة }}$

$$
(O A B):\left\{\begin{array}{l}
x=-t+2 t^{\prime} \\
y=-t+3 t^{\prime} \\
z=-t-2 t^{\prime}
\end{array}\right.
$$

:

$$
\alpha=2: 1-2(3)-3(-1)+\alpha=\text { | }
$$ (P) : $-x-2 y-3 z+2=0$: 세 (1) تُميين نقطة تقاطع (OAB) و (P) :

$$
\left\{\begin{array}{l}
x=-t+2 t^{\prime} \\
y=-t+3 t^{\prime} \\
z=-t-2 t^{\prime} \\
-x-2 y-3 z+2=0
\end{array}\right.
$$

لجملة لج
:
$-\left(-t+2 t^{\prime}\right)-2\left(-t+3 t^{\prime}\right)-3\left(-t-2 t^{\prime}\right)+2=0$
$\mathbf{6 t}-\mathbf{2} \mathbf{t}^{\prime}+\mathbf{2}=\mathbf{0}$ ي $\mathbf{t}-\mathbf{2} \mathbf{t}^{\prime}+2 \mathbf{t}-6 \mathbf{t}^{\prime}+3 \mathbf{t}+6 \mathbf{t}^{\prime}+\mathbf{2}=\mathbf{0}$

$(P) \cap(O A B):\left\{\begin{array}{l}x=5 t+2 \\ y=8 t+3 \\ z=-7 t-2\end{array}:\left\{\begin{array}{l}x=-t+2(3 t+1) \\ y=-t+3(3 t+1) \\ z=-t-2(3 t+1)\end{array}\right.\right.$
 . $\overrightarrow{\mathrm{v}}(5 ; 8 ;-7)$ ($\mathrm{B}(2 ; 3 ;-2)$
(P) (P التيين المعادلة الديكارتية للمستوى $x+2 y+4 z+c=0$ المعادلة الديكارتية هي

لدينا : المعادلة الديكارتية للمسنّو (
$\overrightarrow{\mathrm{AC}}(2 ;-4 ;-2), \overrightarrow{\mathrm{AB}}(3 ; 0 ; 2)$: لاينا

$(A B C):\left\{\begin{array}{l}x=3 t+2 t^{\prime}-1 \ldots(1) \\ y=-4 t^{\prime}+2 \ldots(2) \\ z=2 t-2 t^{\prime}+1 \ldots(3)\end{array}\right.$
$\left\{\begin{array}{l}x+1=t(3)+t^{\prime}(2) \\ y-2=t(0)+t^{\prime}(-4) \\ z-1=t(2)+t^{\prime}(-2)\end{array}\right.$

ي $x=\frac{3}{5} x+\frac{3}{5} z+1-\frac{1}{2} y-1:$ ومنه $x=\frac{3}{5}(x+z)+2 \times \frac{1}{4}(2-y)-1$ $\frac{4 x-6 z+5 y}{10}=0: 0$ وعايه $x-\frac{3}{5} x-\frac{3}{5} z+\frac{1}{2} y=0$
ومنه المعادئة الديكارنيةَ للمستّوى (ABC) هي : $4 x+5 y-6 z=0$ (

!

$$
-y+5 z-6=0 \text { : }-2(2 y-3 z+4)+3 y-z+2=0
$$

$$
x=2(5 z-6)-3 z+4: \text { بالتُعويض في x } x=5 z-6=
$$

$$
\left\{\begin{array} { l }
{ x = 7 t - 8 } \\
{ y = 5 t - 6 } \\
{ z = t }
\end{array} \quad : \text { نج } _ { z = t } \text { t و بوضع } \quad \left\{\begin{array}{l}
x=7 z-8 \\
y=7 z-8 \\
y=5 z-6 \\
z=z
\end{array}\right.\right.
$$

(D) (P) (P)
(D) (P) و (P) تيين

$$
\left\{\begin{array}{l}
t-1=3 u-2 v-4 \\
-t+4=5 u-4 v+1 \\
2 t+3=-2 u+2 v-3
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
t-3 u+2 v+3=0 \ldots(1) \\
-t-5 u+4 v+3=0 \ldots(2) \\
2 t+2 u-2 v+6=0 \ldots(3)
\end{array}\right.
$$

يلجمع (1) و (2) نجـ : $u=\frac{1}{8}(6 v+6): 8 u+6 v+6=0 \quad$ ومنه

$$
\begin{aligned}
& \text { u } u=\frac{1}{4}(3 v+3) \\
& 2 t+2 \cdot \frac{1}{4}(3 v+3)-2 v+6=0 \\
& \text { ومنه : } 2 t+\frac{1}{2}(3 v+3)-2 v+6=0 \text { : } \\
& 4 t+3 v+3-4 v+12=0: 2 t+\frac{3}{2} v+\frac{3}{2}-2 v+6=0 \\
& t=\frac{1}{4}(v-15): \quad 4 t-v+15=0: 0 \text { ومنه } \quad \text { وعليه } \\
& \frac{1}{4}(v-15)-\frac{3}{4}(3 v+3)+2 v+3=0: \text { بالتُويض في }
\end{aligned}
$$

2- التمثيل الوسيطي للمستّوى (P) $\overrightarrow{\mathbf{A M}}=\mathbf{t} \overrightarrow{\mathbf{u}}+\mathbf{t}^{\prime} \overrightarrow{\mathbf{v}}:$:

$$
(P):\left\{\begin{array}{l}
x=-t+t^{\prime}-2 \\
y=t-t^{\prime}-2 \\
z=4 t+3 t^{\prime}+2
\end{array}: ي \quad\left\{\begin{array}{l}
x+2=-t+t^{\prime} \\
y+2=t-t^{\prime} \\
z-2=4 t+3 t^{\prime}
\end{array}:\right.\right.
$$

3- استنتاج المعادلة الايكارتية للمستوي (

$$
\left\{\begin{array}{l}
x=-t+t^{\prime}-2 \ldots(1) \\
y=t-t^{\prime}-2 \ldots(2) \\
z=4 t+3 t^{\prime}+2 \ldots(3)
\end{array}\right.
$$

$$
\text { نجمع (1) و (2) نجد : ومنه : } x+y+4=0=-4
$$

وهي المعادلة الديكارتية للمستوى (P'
4- تعيين نقط تقاطع (P) و (P) :

$$
\text { (2) } \ldots \mid x+y+4=0
$$

$$
z=\frac{1}{4}(-y+4)
$$

$$
\left\{\begin{array}{l}
x=-t-4 \\
y=t \\
z=-\frac{1}{4} t+1
\end{array}:\left\{\begin{array}{l}
y=t
\end{array}:\left\{\begin{array}{l}
x=-y-4 \\
y=y \\
z=-\frac{1}{4} y+1
\end{array}:\left\{\begin{array}{l}
x=-y-4 \\
z=-\frac{1}{4} y+1 \\
y=y
\end{array}:\right. \text { ! }\right.\right.\right.
$$

 (D) و (P) $\quad \overrightarrow{\mathbf{W}}\left(-1 ; 1 ;-\frac{1}{4}\right)$ التمرين 5 :

تعيين مستقيم التقاطع بالتمثيل الوسبيطي :

$$
\left\{\begin{array}{l}
x-2 y+3 z-4=0 \ldots(1) \\
-2 x+3 y-z+2=0 \ldots(2)
\end{array}\right.
$$

$$
\begin{aligned}
\mathbf{t}^{\prime}=\mathrm{v}-2: \text { : وعله } \mathrm{t}^{\prime}-\mathrm{v}+2=0 \\
2 \mathrm{t}-\mathrm{v}+2+2 \mathrm{u}-\mathrm{v}-2=0
\end{aligned}
$$

$$
-u+v+2+u-2 v+2=0 \quad \text { : }-\mathbf{~}
$$

$$
\left\{\begin{array}{l}
x=t+1 \\
y=-t \\
3=2 t-1
\end{array} \quad: \quad\right. \text { نجب }
$$

: 9 : 9 ($(\mathrm{AB}):\left\{\begin{array}{l}x=1 \\ y=0 \\ z=0\end{array} \quad(\mathrm{AD}):\left\{\begin{array}{l}x=0 \\ y=t \\ z=0\end{array} \quad(\mathrm{AE}):\left\{\begin{array}{l}x=0 \\ y=0 \\ z=1\end{array}\right.\right.\right.$? إتيين نقط تقاطع (P) مح الحروف : مع الحرف [AB] :

$$
\left\{\begin{array}{l}
2 x+4 y+2 z-1=0 \\
x=t \\
y=0 \\
z=0
\end{array}\right.
$$

 مـع الحرف [AD] :

$$
\left\{\begin{array}{l}
2 x+4 y+2 z-1=0 \\
x=0 \\
y=t \\
z=0
\end{array}\right.
$$

$\frac{v-15-9 v-9+8 v+12}{4}=0 \quad$ وعنه هيا مستميل $21=0$ لـن (P) و (D) لا يتقاططان.

تيين نقط تقاطع (

$$
\left\{\begin{array}{l}
x+4 y-Z=0 \ldots(1) \\
x+y+Z-6=0 \ldots(1) \quad \text { نحل الجمطة } \\
x+2 y-Z-4=0 \ldots(1)
\end{array}\right.
$$

$$
x=\frac{1}{2}(-5 y+6): 2 x+5 y-6=6: \text { بجمع (1) و (2) نجـ }
$$

$$
\text { بالتُويض في (3) نجد : } 0 \text { - } 0 \text { بي }
$$

$$
\text { وعيه: : }-\mathrm{y}-2 Z-2=0: \frac{-5 y+6+4 y-2 Z-8}{2}=0 \text { ومنه }
$$

$$
: \text { : } \frac{5}{2} y+3+4 y+\frac{1}{2} y+1=0
$$

تعيين نقط تقاطع (P) و (P) :

$$
\begin{aligned}
& \mathrm{t}-\mathrm{t}^{\prime}+1=-\mathrm{u}+2 \mathrm{v}-1 \\
& -\mathrm{t}+2 \mathrm{t}^{\prime}=\mathrm{u}-\mathrm{v} \\
& 2 \mathrm{t}-\mathbf{t}^{\prime}-\mathbf{1}=-\mathbf{2 u}+\mathrm{v}+\mathbf{1} \\
& \left\{\begin{array}{l}
t-t^{\prime}+u-2 v+2=0 \ldots(1) \\
-t+2 t^{\prime}-u+v=0 \ldots \text { (2) } \\
2 t-t^{\prime}+2 u-v-2=0 \ldots \text { (3) }
\end{array}\right. \text {, }
\end{aligned}
$$

$$
A(4 ; 0 ;-4) \text { متقاطعان في النقطة }\left(D_{2}\right)\left(D_{1}\right)
$$

2) تُعيين التمثيّل الوسبطي للمستوى (P) :
 (P) ومنر

لئسل A و الشعاعين

9هو التُشيّل الوسيطي للمستوى (P).
3) تعيين المعادلة الديكارتية للمستوى (P) :

$$
\left\{\begin{array}{l}
x=-t+t^{\prime}+3 \ldots(1) \\
y=t+t^{\prime}+1 \ldots(2) \\
z=2 t-t^{\prime}-2 \ldots(3)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
2 x+4 y+2 z-1=0 \\
x=0 \\
y=0 \\
z=t
\end{array}\right.
$$

 $\overrightarrow{\mathrm{ps}}\left(-\frac{1}{2} ; \frac{1}{4} ; 0\right) \rho \overrightarrow{\mathrm{pk}}\left(-\frac{1}{2} ; 0 ; \frac{1}{2}\right)^{; \mathrm{ks}}\left(0 ; \frac{1}{4} ;-\frac{1}{2}\right)$ $p s=\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{2}+0^{2}}=\sqrt{\frac{1}{4}+\frac{1}{16}}=\frac{\sqrt{5}}{4}$
$\mathrm{pk}=\sqrt{\left(-\frac{1}{2}\right)^{2}+(0)^{2}+\left(\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}+\frac{1}{4}}=\sqrt{\frac{2}{4}}=\frac{\sqrt{2}}{2}$
$i s=\sqrt{(0)^{2}+\left(\frac{1}{4}\right)^{2}+\left(-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{16}+\frac{1}{4}}=\sqrt{\frac{5}{16}}=\frac{\sqrt{5}}{4}$
L. $=\frac{\sqrt{5}}{4}+\frac{\sqrt{2}}{2}+\frac{\sqrt{5}}{4}=\frac{\sqrt{5}+2 \sqrt{2}+\sqrt{5}}{4}$
$L=\frac{\sqrt{2}+\sqrt{5}}{2}$
التُمرين 10 : .

Z \mathbf{Z}－ 15

： \mathbb{Z} a
 ．$b=a k$
．c（ذ）

竍

$$
\begin{aligned}
& . r=2 ، q=5 \text {) } 17=3 \times 5+2, b=3 \cdot a=17 \\
& r=3 ، q=-6 \text { din } و \text { و } 27=5(-6)+3 ، b=5 \text { ، } a=-21 \\
& \text { (II) القاسم المشترك الاكبر لعددين طبيعيين : }
\end{aligned}
$$

الهس المشترك الأكبر لعددين طبيعيين غير معدومين هو آخر باق غير معدوم ｜lالالمnات المتتابعة المنجزة في خوارزمية إلقيس ．

PGCD（24،149）

$$
\begin{array}{ccr}
24=5 \times 4+4 & , & 149=24 \times 6+5 \\
4=1 \times 4+0 & و & 5=4 \times 1+1
\end{array}
$$

．و منه العددان 149 و24 24 أوليان فيما بينها
البو عة القو اسم المشتركة لعددين طبيعيين غير معدومين هي مجموعة قو اسم ．

$$
x=-\frac{1}{4}(x+y+2 z)+\frac{1}{2}(x+y-4)+3
$$

$$
x=\frac{-x-y-2 z+2 x+2 y-8+12}{4}
$$

$$
x=x+y-2 z+4
$$

（P）وعليه ： $3 x-y+2 z-4=0$ وهي المعادلة الديكارتية للمستوى

$$
\begin{aligned}
& z=2 t-\frac{1}{2}(x+y-4)-2 \text { بالتعويض في (3) نجد } \\
& 2 z=4 t-x-y \quad z=\frac{4 t-x-y+4-4}{2}: \text { ومنه } \\
& \mathrm{t}=\frac{\mathbf{1}}{\mathbf{4}}(\mathrm{x}+\mathrm{y}+2 \mathrm{z}) \quad \text { ئن : } \\
& \text { نـوض t } \mathrm{t} \text { و بقيمتيهما في المعادلة (1) فنجد : }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
a^{2}+2 b^{2}=15488 \\
\operatorname{PGCD}(a ; b)=8
\end{array}\right.
$$

倍 الأعداد الطبيعية a a و التي تحقق :
n+3 PGCD $\left(n-1 ; n^{2}+2 n-1\right)=1$) آثبت أنه من أجل كل عدي صحيح n فان عين كل الأعداد الصحيحة n بحيث :

$$
(n+3)\left(n^{2}+2 n-2\right) \text { يقسم }(n-1)\left(2 n^{3}+1\right)
$$

a : 10 الـُّ 10 :

JS 1-31

$$
\begin{aligned}
& \text { : } 1 \text { 1 } \\
& y \text { g } x \text { ن } \\
& x^{2}-y^{2}=80 \\
& x-y<x+y \text { حيث }(x-y)(x+y): \text { : }
\end{aligned}
$$

) $x=\frac{81}{2}$ (مرفوض $2 x=81$: بالجمع نجد $2 x=180$
$y=19$: بالجمع نجد : 19 : $2 x=21$: $2 x=2$ $y=8:$: بالجمع نجد : $\left\{\begin{array}{l}x-y=4 \\ x+y=20\end{array}\right.$ (مرفوض) $x=\frac{21}{2}$ (بالجمع نجد : $2 x=21$ و منه $\begin{aligned} & x-y=5 \\ & x+y=16\end{aligned}$ $y=1$: $x=9:\left\{\begin{array}{l}x-y=8 \\ x+y=10\end{array}\right.$
: PGCD (660:42) تُعيين
$660=42 \times 15+30$

$$
42=30 \times 1+12
$$

$$
30=12 \times 2+6
$$

$$
12=6 \times 2+0
$$

PGCD $(660 \leq 42)=6$:
و منه القواسم المشتركة للعددين 42و660 هي قو اسم (لعدد 6 و هي : 6 ؛ 3 ؛ 3 ؛ 1

$$
k \in \mathbb{Z}^{*}, P G C D(k a ; k b)=K P G C D(a ; b)(1
$$

$$
\left\{\begin{array}{l}
a=d a^{\prime} \\
b=d b^{\prime} \\
a^{\prime} \wedge b^{\prime}=1
\end{array} \quad: \text { ففان } 2\right.
$$

 $x^{2}-y^{2}=80$ عين قَيم الأعداد الصحيحة الموجبة : x y x بحيث

$$
\text { التنرتيب . عين العدد a> عنما أن a> } 300 \text {. }
$$

PGCD $\quad(a ; 72)=8$ عين كل الأعداد a الأصنز هن 150 و تحقق الشرط اللسابقى .

(a+b=3360	
$\left\{\begin{array}{l} P G C D(a ; b)=84 \\ a \leq b \end{array}\right.$	عين العددين الطبيعيين a و b حيث :

$\left\{\begin{array}{l}a-b=82368\end{array}\right.$ $\operatorname{PGCD}(a ; b)=24$

التمرين 6 : (5

فابن : $\operatorname{PGCD}(a ; 72)=8$ of أن

$.17 \cdot 16 \cdot 14 \cdot 13 \cdot 11 \cdot 10 \cdot 8 \cdot 7 \cdot 5 \cdot 4 \cdot 2 \cdot 1: a^{\prime}$

$$
: b \text { a cimel }
$$

$$
\left\{\begin{array}{l}
a=84 a^{\prime} \\
b=84 b^{\prime} \quad \text { فبان } \operatorname{PGCD}(a ; b)=84 \\
a^{\prime} \wedge b^{\prime}=1
\end{array}\right. \text {, }
$$

$$
84 a^{\prime}+84 b^{\prime}=3360 \text { : فان } a+b=3360 \text { ن }
$$

$$
a^{\prime}+b^{\prime}=40: 84\left(a^{\prime}+b^{\prime}\right)=3360 \text { و وليه منه }
$$

: b ง a
$24 a^{\prime} .24 b^{\prime}=82368$: وعليه $\quad a . b=82368$, لدينا , $a^{\prime} b^{\prime}=143=13 \times 11 \quad: \quad 576 a^{\prime} b^{\prime}=82368$ وعليه

$$
b=3432 \text { و } a=24 \text { ومنه } b^{\prime}=143, ~ a^{\prime}=1
$$

$$
b=24 \quad, \quad a=3432 \text { وn } b \text { ومنه } b^{\prime}=1 \quad, a^{\prime}=143
$$

: تعيين قيم x
$x y-8 x-30=0$

$$
x(y-8)=30 \quad:
$$

$$
\begin{array}{lll}
y=38, & x=1 & \text { ي } \\
y=23 & \text {, } & x=2=30, ~ \\
y=1 & \text { ي } \\
y=15 & \text {, } & \text {, } x=2
\end{array}
$$

$$
\begin{array}{llll}
y=38 & , & x=1 & \text { ي } \\
y=23 & , & x=2
\end{array} \text { ي } y-8=15, x=2 ;
$$

$$
\begin{array}{lllll}
y=23 & , & x=2 \\
y=18
\end{array}, x=3 \text { ي } y-8=10, x=3 *
$$

$$
\begin{array}{lllll}
y=14 & x=5 & \text { s } & & \\
y=13 & , ~ & x=6=5 & \text {, } & x=6
\end{array}
$$

$$
\begin{aligned}
& y=13, x=6 \text { si } y-8=5 \text {, } x-0 \\
& y=11 \text {, } x=10 \text { iो } y-8=3 \text {, } x=10 *
\end{aligned}
$$

\[

\]

$$
\begin{array}{lllll}
y=10 & \text {, } & \text { ي } \\
y=9 & \text { i } & y=-8=1 \quad \text {, } & x=30 \\
y=-22 & \text {, } & x=-1 & \text { ي } \\
y-8=-30 & \text {, } & x=-1
\end{array}
$$

$$
\begin{array}{lllll}
y=-22 & \text {, } x=-1 & \text { ي } & y-8=-30 \text {, } & x=-1 \\
y=-7 & \text {, } & x=-2 & \text { ي } & y-8=-15 \text {, } \\
y=-2
\end{array}
$$

$$
\begin{array}{lllll}
y=-7 & \text {, } x=-2 & \text { ي } & y-8=-15 \text {, } & x=-2 \\
y=-2 & \text {, } & x=-3 & \text { ي } & y-8=-10
\end{array} \quad x=-3 \quad *
$$

$$
\begin{array}{llllll}
y=-2 & \text {, } x=-3 & \text { ي } \\
y=2 & \text {, } x=-5 & \text { ي } & y-8=-10 & \text {, } & x=-5 \\
y=-6 & \text {, } & x=-5
\end{array}
$$

$$
\begin{array}{lllll}
y=2 & \text {, } x=-5 & \text { ي } \\
y=3 & \text {, } & x=-6 & y=-8=-5 & \text {, } \\
y=-6
\end{array}
$$

$$
\begin{array}{lllll}
y=3 & \text {, } x=-6 & \text { ئ } \\
y=5 & \text { i } & y-8=-5 & \text {, } x=-0 \\
y=-10 & \text { يi } & y-8=-3 & \text {, } x=-10
\end{array}
$$

$$
\begin{array}{lllll}
y=5 & \text {, } x=-10 \text { ي i } & y-8=-3 & \text {, } x=-10 \\
y=6 & \text {, } x=-15 \text { i } & y-8=-2 & \text {, } & x=-15
\end{array}
$$

$$
\begin{array}{llll}
y=5 & \text {, } x=-15 \text { ي } \\
y=6 & \text { i } \\
y=-8=-2 & \text {, } x=-15 \\
v-7 & \text { i } \\
y=-8=-1 & \text {, } x=-30
\end{array}
$$

PGCD (79600, 50800)
PGCD (79600,50800) (حساب *
$79600=50800 \times 1+28800$ $50800=28800 \times 1+22000$

$$
28800=22000 \times 1+6800
$$

$$
22000=6800 \times 3+1600
$$

$$
6800=1600 \times 4+400
$$

$$
1600=400 \times 4+0
$$

($n-1$ و أوليان فيما بينهيا (عدلدان متتابعان) n 1 1 أو m يقسم m $\operatorname{PGCD}\left(n-1 ; n^{2}+2 n-2\right)=1:$: إن : $m=-1$ g $m=1$

$$
\text { |(1) تعيين الأعاد الصحيحة n بيث (} n \text {) }\left(2 n^{3}+1\right) \text { يقسم }
$$

$$
(n+3)\left(n^{2}+2 n-2\right)
$$

$$
A(n)=(n-1)\left(2 n^{3}+1\right):
$$

$$
B(n)=(n+3)\left(n^{2}+2 n-2\right)
$$

$$
(n+3)\left(n^{2}+2 n-2\right)(n-1)\left(2 n^{3}+1\right) \text { يقس انـان }
$$

(1)

$$
\begin{aligned}
& A(-3)=(-3-1)\left(2(-3)^{3}+1\right)=212 \\
& A(-1)=(-1-1)\left(2(-1)^{3}+1\right)=2 \\
& A(0)=(0-1)\left(2 \times 0^{3}+1\right)=-1 \\
& A(2)=(2-1)\left(2 \times 2^{3}+1\right)=17 \\
& A(3)=(3-1)\left(2 \times 3^{3}+1\right)=110 \\
& A(5)=(5-1)\left(2 \times 5^{3}+1\right)=1004 \\
& B(-3)=(-3+3)\left((-3)^{2}+2(-3)-2\right)=0 \\
& B(-1)=(-1+3)\left((-1)^{2}+2(-1)-2\right)=-6 \\
& B(0)=(0+3)\left(0^{2}+2(0)-2\right)=-6 \\
& B(2)=(2+3)\left(2^{2}+2(2)-2\right)=30
\end{aligned}
$$

b و a a

$$
\left\{\begin{array}{c}
a=8 a^{\prime} \\
b=8 b^{\prime} \quad \text { بإن } 1 \text { فأن } \operatorname{PGCD}(a ; b)=8 \\
a^{\prime} \wedge b^{\prime}=1
\end{array}\right.
$$

$$
\left(8 a^{\prime}\right)^{2}+2\left(8 b^{\prime}\right)^{2}=14488 \quad: \quad \text { و منه }
$$

$$
64 a^{\prime 2}+2\left(64 b^{\prime 2}\right)=15488
$$

$$
a^{\prime 2}+2 b^{\prime 2}=242 \quad 64\left[a^{\prime 2}+2 b^{\prime 2}\right]=15488
$$

1) تعيين n حيث n-1 يقسم n+3:

$$
\text { PGCD }\left(n-1 ; n^{2}+2 n-2\right)=1 \text { إثبات أن } 1
$$

و مذه: m m يقسم $n-1$ و يقسم $n^{2}+2(n-1$ وبالثالي: m يقسم n و (n-1)

$$
\begin{aligned}
& a^{\prime 2}=2\left(121-b^{\prime 2}\right) \text { (} a^{\prime 2}=242-2 b^{\prime 2}=2\left(121-b^{\prime 2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a^{\prime}=15,49 \ldots . . \text { مرفوض } a^{\prime 2}=240: b^{\prime}=1 \text { * } \\
& a^{\prime}=15,29 \ldots \ldots \text {..... } a^{\prime 2}=234: b^{\prime}=2 \text { * } \\
& a^{\prime}=14,96 \ldots . . . \\
& a^{\prime}=14,49 \ldots \ldots \text {. } a^{\prime 2}=210: b^{\prime}=4 \text { * } \\
& a^{\prime}=138,85 \ldots . . \text { مرفوض } a^{2}=192: b^{\prime}=5 \text { * } \\
& a^{\prime}=13,03 \ldots . . . \text { مرفوض } a^{2}=170: b^{\prime}=6 \text { * }
\end{aligned}
$$

$$
\begin{aligned}
& a^{\prime}=10,67 \ldots \text { مرفوض } a^{\prime}=144: b^{\prime}=8 \text { * } \\
& a^{\prime}=8,94 \ldots \text { مرفوض } a^{\prime 2}=80: b^{\prime}=9 \text { * } \\
& a^{\prime}=6,48 \ldots \text { مرفوض } a^{\prime 2}=42: b^{\prime}=10 \text { * } \\
& a^{\prime}=0 \text { ومنه } a^{\prime 2}=0 \quad: b^{\prime}=11 \text { * }
\end{aligned}
$$

 19 =4[3]

$$
\begin{aligned}
& \text { / } 23-(-1) \text { : لأن } 23 \text { [2] }
\end{aligned}
$$

($n \neq 1$) عدد طبيعي غير معلوم n, x, b, a $a+x \equiv b+y[n]:$: فابن $x \equiv y[n], ~ a \equiv b[n]$ إذا $x+a \equiv y+a[n]:$: إذا كان $x \equiv y[n]$ $x \times a \equiv y \times b[n]:$ ف فإن $x \equiv y[n]$ و $a \equiv b[n]$ (3 إذا $a+x \equiv a+y[n]:$: فإن $x \equiv y[n] \quad$ (4) $\lambda x \equiv \lambda y[\lambda n] \quad: \quad \lambda \in \mathbb{N}^{*}, x \equiv y[n] \quad$ فإن \quad (5 $x^{p} \equiv y^{p}[n] \quad: \quad$ فان $\quad p \in \mathbb{N}, x \equiv y[n] \quad$ (إنا كان . n (7) كل عدد صحيح

$$
x \equiv r[n]: \text { أي إذا كان : } x=n q+r
$$

11-1
n n $N=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} n^{n-1}+a_{n} n^{n}$
$a_{n} \neq 0, i \in\{0,1,2$,

$$
\text { حيث من أجل كل عدد } i \text { فان : } n\} .0 \leq a_{i} \leq x-1 .
$$

$$
\begin{aligned}
& B(3)=(3+3)\left(3^{2}+2(3)-2\right)=78 \\
& B(5)=(5+3)\left(5^{2}+2(5)-2\right)=264 \\
& \text { و يكون } n=-3(n) \text { قاسما للثعد } B(n) \text { في حالة } \\
& \text {. } n=0 \text { of } n=-1 \text {, }
\end{aligned}
$$

نفرض حاصل القّسمة q q^{2} فيكون باقي القسمـة $\left\{\begin{array}{l}a=45 q+q^{2} \\ q \leq 6\end{array}:\left\{\begin{array}{l}a=q \times 45+q^{2} \\ q^{2}<45\end{array}:\right.\right.$:

 التتمرين 10 :
: $b^{n+1} a b^{n}-1$ عیيين حاصل قسمة $\left\{\begin{array}{l}a b^{n}-b^{n}=b^{n+1}+r b^{n} \\ r b^{n} \leq b^{n+1}-b^{n}\end{array}:\right.$ نجـ b^{n} بالضضرب $\left\{\begin{array}{l}a-1=b q+r \\ r \leq b-1\end{array}\right.$ $\left\{\begin{array}{l}a b^{n}=b^{n+1} q+\left(r b^{n}+b^{n}\right) \\ r b^{n}+b^{n} \leq b^{n+1}\end{array}:\left\{\begin{array}{l}a b^{n}=b^{n+1} q+r b^{n}+b^{n} \\ r b^{n}+b^{n} \leq b^{n+1}\end{array}:\right.\right.$ ومن $\left\{\begin{array}{l}a b^{n}-1=b^{n+1} q+\left(r b^{n}+b^{n}-1\right) \\ r b^{n}+b^{n}-1<b^{n+1}\end{array}\right.$

و ومنه حاصل الثقسمة $a b^{n}-1$ على q هو b^{n+1}.
$(2012)^{1990}+(1835)^{1991}+3 \equiv 0[13]$: 3-4
 التّمرين 6 :ـ

$$
n^{2}-2 n+27 \equiv 0[n-3] \text { : عين قيم العدد الطبيعي n بحيث }
$$

$$
\text { n+1 } 2 n+1
$$

3- عين باقي قسمةٌ العدد 415 على 8 ثم استثتتج باقى قسمة العدد 831 على 8.
$4^{n}-3 n-1 \equiv 0[9]$: أثبت أنه من أجل كل عدد طبيعي n فأن التمرين 9 :
$n^{2}+n+1 \equiv 0[7]$ 1- حدد قيم العدد الطبيعي n بحيث يكون n يكي

$2^{2 s}+2^{s}+1 \equiv 0[7]$: استنتج قيم الأعداد الطبيعية
التّمرين 10 :
كتب في نظام العدد الأي أساسه 9 الأعداد التّالية و المكتوبة في النظام العشري:
. 8540,1417,2008,1962,1830,100
التمرين 11 :
a عدد يكتب في نظام التّعداد ذي الأساس 2 كما يلي : 1011011 اكتب a في نظام التعداد ذي الأساس 12 التمرين 12 :
$\overline{214}+\overline{362}=\overline{606}$: عين نظام التدداد الأي أجريت فيه الالعملية التّالية التمرين 13 :

$$
\overline{\overline{4221}}+\overline{3424} \quad \text { احسب في نظام التتغاد الذي أساسه } 5 \text { ما يلي : }
$$

التمرين 14 :

$$
\text { اكتب الثعد } a>6 \text { (a+1 } a \text { في نظام اللتعداد الذي أساسه } a \text { حيث } a
$$

ركتب العدد a في اللظام الذي أساسه 5 كما يلي : a a33. a و يكتب في النظام الذي أساسه 3
 و هي الكتابة المخختصرة للعدد N في النظام اللأي أساسهه X و تسمى الأعداد . $a_{n}, \ldots . . a_{1}, a_{0}$ حالات خاصة :

$$
9,8,7,6,5,4,3,2,1,0
$$

 44 النظام الذي أساسه 12 : و أرقامه 12 ($\beta, \alpha, 9,8,7,6,5,4,3,2,1,0$. حيث

$$
\beta=11, \alpha=10
$$

 أسناسه

التّمرين 1 :
1- الرس تبعا لُقيم العدلد الطبيعي n باقي قّسمة : "2 على 7 ثم استنتّج باقي قسمة كل من
 7 هن أجل كل عدد طبيعي 7 ال

أثبت أنه من أجل كل عدد طبيعي n فبان : $n\left(n^{4}-1\right) \equiv 0[5]$ التّمرين 3 :
ما هو باقي القسسمة الإقليدية للعدد : $n=100^{1000060}$ على 13 .
 $k \in \mathbb{N}$ ث $n=2 k$ ثم عين العدد الطبيعي a بحيث : $7^{n}+1 \equiv a[8]$ من الجل التّمرين 5 :
1- أدرس تبعا لقيم العدد الطبيعي n باقي قسمة كل من العددين "2 و "10 على13.
2- بين أنه من أجل كل عدد طبيعي n فابن :
17. $(1310)^{6 n+3}+24 .(1926)^{12 n+7} \equiv 0[13]$
$(1418)^{1004} \equiv 2[7]$ لكن $2008=3 \times 669+1$ و
2) اثبات أن $2^{3 n+1} \equiv 2[7]$ [لالدينا : $2007.2^{3 n+1} \equiv 5.2^{3 n+1}[7]$ [7 $2007 \equiv 5$ و منـا
(1) $\ldots 2007.2^{3 n+1} \equiv 3[7]$: $2007.2^{3 n+1} \equiv 10[7]$: أي :
 (2) $\ldots 1417.2^{6 n} \equiv 3[7]:$: \quad, $2^{6 n} \equiv 1[7]$: : (3) $\ldots 2007.2^{3 n+1}+1417.2^{6 n} \equiv 6[7]:(2)$ و (1) in
 $2007.2^{3 n+1}+1417.2^{6 n}+1954 \equiv 0[7]:(4)$ و (3) ن 4
 التمرين 2 : 1) إثبات أن :

$$
B_{n}=n\left(n^{4}-1\right): \text { : } n\left(n^{4}-1\right) \equiv 0[5]
$$

 جميع قيّم n في كل حالة :

$$
n\left(n^{4}-1\right) \equiv 0[5]
$$

$$
n^{4}-1 \equiv 0[5] \text { و } n^{4} \equiv 1[5] \quad \text { اذذا كان } n \equiv 1[5] \text { فبان }
$$

$$
n\left(n^{4}-1\right) \equiv 0[5] \text { ومن }
$$

$$
n^{4}-1 \equiv 0[5] \quad n^{4} \equiv 1[5] \quad \text { فبان } n \equiv 2[5] \text { إذا كان }-3
$$

$$
n\left(n^{4}-1\right) \equiv 0[5] \text { ومنه }
$$

$n^{4}-1 \equiv 0[5] \quad$, $\quad n^{4} \equiv 1[5] \quad$ فوان $n \equiv 3[5] \quad$. 4 $n\left(n^{4}-1\right) \equiv 0[5]$ ومنه $n^{4}-1 \equiv 0[5] \quad$, $\quad n^{4} \equiv 1[5] \quad: \quad$: n $n\left(n^{4}-1\right) \equiv 0[5]$ ومنه $B_{n} \equiv 0[5]$: ومنه من أجل كل عدد طبيعي n فبان

$$
\text { احسب : الحيد }(x-2)\left(x^{2}+x+1\right)
$$

$\overline{110} \times \overline{111}=\overline{101010}:$ في أي نظام تُعداد x لدينا

US 1-1

1- در اسة بو اقي قسمة
$2^{0} \equiv 1[7], 2^{1} \equiv 2[7], 2^{2} \equiv 4[7], 2^{3} \equiv 1[7]$ $2^{3 p} \equiv 1[7]: p \in \mathbb{N}$: $2^{3 p+1} \equiv 2[7] \quad$: ي $\quad 2^{3 p} \times 2 \equiv 1 \times 2[7]:$: $2^{3 p+2} \equiv 4[7] \quad$: \quad i $\quad 2^{3 p} \times 2^{2} \equiv 1 \times 2^{2}[7]$

$$
\begin{aligned}
& \text {. } n=3 p+2 \text {. }
\end{aligned}
$$

- باقي قسمة
$2^{2008} \equiv 2[7]:$: لدينا : $2008=3 \times 669+1$

$$
\text { ـ باقي قّسمة } 1954 \text { (1962) على } 7 \text { : }
$$

 $(1962)^{1954} \equiv 2[7]:$: $\quad 2^{1954} \equiv 2[7]$: - باقي قسمة
$(1418)^{1004} \equiv 4^{1004}[7]$ لدينا : $1418 \equiv 4[7]$ منـ $(1418)^{1004} \equiv 2^{2008}[7]: ي^{\prime}(1418)^{1004} \equiv\left(2^{2}\right)^{1004}[7]$: عليه

$$
\begin{array}{rll}
2^{12 p+5} \equiv 6[13] & : & 2^{12 p} \cdot 2^{5} \equiv 2^{5}[13] \\
2^{12 p+6} \equiv 12[13] & : & 2^{12 p} \cdot 2^{6} \equiv 2^{6}[13] \\
2^{12 p+11} \equiv 11[13] & : & 2^{12 p} \cdot 2^{7} \equiv 2^{7}[13] \\
2^{12 p+8} \equiv 9[13] & : \text { ي } & 2^{12 p} \cdot 2^{8} \equiv 2^{8}[13] \\
2^{12 p+9} \equiv 5[13] & : \text { يا } & 2^{12 p} \cdot 2^{9} \equiv 2^{9}[13] \\
2^{12 p+10} \equiv 10[13]: \text { يا } & 2^{12 p} \cdot 2^{10} \equiv 2^{10}[13] \\
2^{12 p+11} \equiv 7[13] & : \text { ي } & 2^{12 p} \cdot 2^{11} \equiv 2^{11}[13]
\end{array}
$$

و عليه الثيو اقي هي :
2 الباقي 1 الك 1 : $n=12 p+1$ الباقي $n=12 p$
8 الباقيا n : الباقي 4 الما $n=12 p+3$: $n=12 p+2$

$$
\text { بو اقي قسمةة } 10^{n} \text { على } 13 \text { : }
$$

$$
\begin{aligned}
& 10^{0} \equiv 1[13], 10^{1} \equiv 10[13], 10^{2} \equiv 9[13] \\
& 10^{3} \equiv 12[13], 10^{4} \equiv 3[13], 10^{5} \equiv 4[13]
\end{aligned}
$$

$$
10^{6} \equiv 1[13]
$$

$m \in \mathbb{N}: 10^{6 m} \equiv 1[13]: 10^{6} \equiv 1[13]$ $10^{6 m+1} \equiv 10[13]:$: $10^{6 m} \cdot 10 \equiv 10[13]$ $10^{6 m+2} \equiv 9[13]: 10^{6 m} \cdot 10^{2} \equiv 10^{2}[13]$ $10^{6 m+3} \equiv 12[13]:$: $10^{6 m} \cdot 10^{3} \equiv 10^{3}[13]$ $10^{6 m+4} \equiv 3[13]: 10^{6 m} \cdot 10^{4} \equiv 10^{4}[13]$ $10^{6 m+5} \equiv 4[13]: 10^{6 m} \cdot 10^{5} \equiv 10^{5}[13]$ $10^{n} \equiv 1[13]: \mathrm{n}=6 \mathrm{~m}$

و منـه لما

$$
10^{\mathrm{n}} \equiv 10[13]: \mathrm{n}=6 \mathrm{~m}+1
$$

$$
10^{n} \equiv 9[13]: n=6 m+2
$$

$(100)^{2} \equiv 3[13]$ لاينا : $100^{2} \equiv 81[13]$, $100 \equiv 9[13]$

$$
\begin{aligned}
& \left.(100)^{3} \equiv 1[13] \text { (} 100\right)^{3} \equiv 9 \times 3[13] \\
& \begin{aligned}
100^{1000000} & =100^{999999+1} \\
& =100^{999999} .100^{1} \\
& =\left[(100)^{3}\right]^{333333} \times 100
\end{aligned}
\end{aligned}
$$

$$
\left.\left[(100)^{3}\right]^{333333} \equiv 1[13] \quad: \quad \text { و لدينا : } 100\right)^{3} \equiv 1[13] \text { و منه }
$$ $100^{666666} .100 \equiv 1.9[13]$: $\quad(100)^{999999} \equiv 1[13]$: $(100)^{1000000} \equiv 9[13] \quad: \quad$!

$$
7^{n} \equiv 1[8]: \text { : }
$$

$2^{0} \equiv 1[13], 2^{1} \equiv 2[13], 2^{2} \equiv 4[13], 2^{3} \equiv 8[13]$
$2^{4} \equiv 3[13], 2^{5} \equiv 6[13], 2^{6} \equiv 12[13], 2^{7} \equiv 11[13]$
$2^{8} \equiv 9[13], 2^{9} \equiv 5[13], 2^{10} \equiv 10[13], 2^{11} \equiv 7[13]$ $2^{12} \equiv 1[13]$
لدينا :

$$
\begin{aligned}
& 2^{12 p+1} \equiv 2[13]: \begin{array}{ll}
: & 2^{12 p} \cdot 2 \equiv 2[13]: \\
2^{12 p+2} \equiv 4[13] & : \\
: & 2^{12 p} \cdot 2^{2} \equiv 2^{2}[13] \\
2^{12 p+3} \equiv 8[13] & : \\
2^{12 p+4} \equiv 3[13] & 2^{12 p} \cdot 2^{3} \equiv 2^{3}[13] \\
2^{12} & 2^{12 p} \cdot 2^{4} \equiv 2^{4}[13]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 7^{n} \equiv-1[8]: \text { (1) }
\end{aligned}
$$

$$
\begin{aligned}
& p \in \mathbb{N} \text {, } n=2 p+1 \text { : مetion } \quad 7^{n} \equiv-1[8]: \text { : } \\
& \text { : } a \text {) ت تييين }
\end{aligned}
$$

$$
10^{n} \equiv 2^{n}[13]: 10^{n}-2^{n} \equiv 0[13] \text { و م منها }
$$

$$
n^{2}-2 n+27 \equiv 0[n-3]: n \text { تعيين }
$$

$$
n^{2}-3 n+n+27 \equiv 0[n-3]: \text { أي }
$$

$$
n(n-3)+n+27 \equiv 0[n-3]
$$

$$
n(n-3)+(n-3)+30 \equiv 0[n-3]
$$

$$
(n-3)(n+1)+30 \equiv 0[n-3]
$$

$$
30 \equiv 0[n-3]: \text { : } n-3 \equiv 0[n-3] \text { و عليه }
$$

$$
\text { و منه : } n-3 \in\{1 ; 2 ; 3 ; 5 ; 6 ; 10 ; 15 ; 30\} \text { : } n \text { : } 30 \text { و عقسم } n-3 \text { مليه }
$$

$$
a \equiv r[n] \text { 1- إبّبات أن } a
$$

$$
a-r=n q \text { لادينا : } a \leq r<n: \text { و عليه } a=n q+r \text { قي }
$$

$$
\text { و منهه : } a \equiv r[n]: \quad a-r \equiv 0[n] \text { بالتّالي } \quad \text {, } a=0
$$

$$
\begin{aligned}
& 10^{12 m+1} \equiv 10[13]: \alpha=1 \text { من أجل } \\
& 10^{12 m+2} \equiv 9[13]: \alpha=2 \text { من أجل } \\
& 10^{12 m+3} \equiv 12[13]: \alpha=3 \text { من أجل } \\
& 10^{12 m+4} \equiv 3[13]: \alpha=4 \text { من أجل } \\
& 10^{12 m+5} \equiv 4[13]: \alpha=5 \text { من أجل } \\
& 10^{12 m+6} \equiv 1[13]: \alpha=6 \text { من أجل } \\
& 10^{12 m+7} \equiv 10[13]: \alpha=7 \text { من أجل } \\
& 10^{12 m+8} \equiv 9[13]: \alpha=8 \text { من أجل } \\
& 10^{12 m+9} \equiv 12[13]: \alpha=9 \text { من أجل } \\
& 10^{12 m+10} \equiv 3[13]: \alpha=10 \text { من أجن } \\
& 10^{12 m+11} \equiv 4[13]: \alpha=11 \text { من أجل }
\end{aligned}
$$

$$
\begin{aligned}
& 10^{\mathrm{n}} \equiv 12[13]: \mathrm{n}=6 \mathrm{~m}+3 \\
& 10^{\mathrm{n}} \equiv 3[13]: \mathrm{n}=6 \mathrm{~m}+4 \\
& 10^{\mathrm{n}}=4[13]: \mathrm{n}=6 \mathrm{~m}+5 \\
& A_{n}=17 \cdot(1310)^{6 n+3}+24 .(1926)^{12 n+7}: \text { :2 } \\
& \qquad \begin{array}{l}
\text { نبين أن } A_{n} \equiv 0[13]
\end{array}
\end{aligned}
$$

$$
(1310)^{6 n+3} \equiv 10^{6 n+3}[13]: \text { لاينا : } 1310 \equiv 10[13] \text {, } 17 \text { و عليه }
$$

$$
\text { 17. } \left.(1310)^{6 n+3} \equiv 4.12[13] \text { : و منه : } 1310\right)^{6 n+3} \equiv 12[13] \text { بالتالي }
$$

$$
24 \equiv 11[13] \text { : أي : }
$$

$$
(1926)^{12 n+7} \equiv 2^{12 n+7}[13]: \text { : } 1926 \equiv 2[13] \text { و عليه }
$$

$$
\text { 24. }(1926)^{12 n+7} \equiv(11)^{2}[13] \text { : و منه : و بالتالئي }
$$

(2)......24.(1926)

$$
\text { 17. }(1310)^{6 n+3}+24 .(1926)^{12 n+7} \equiv 0[13]:(2) و(1) \text { ن }
$$

$$
A_{n} \equiv 0[13]: \text { : }
$$

$$
(2012)^{1990}+(1835)^{1991} \equiv 10[13]: \text { نبر هن أن }
$$

$$
(2012)^{1990} \equiv 10^{1990}[13]: 2012 \equiv 10[13]: \text { : لدينا }
$$

$$
(2012)^{1990} \equiv 3[13]: \text { كن : } 1990=6 \times 331+4 \text { و عليه }
$$

$$
\text { و لدينا : } 1835)^{1991} \equiv 2^{1991}[13]: \text { : } 1835 \equiv 2[13] \text { منـ }
$$

$$
(1835)^{1991} \equiv 7[13]: \text { : } 1991=12 \times 165+11 \text { و علكن }
$$

$$
(2012)^{1990}+(1835)^{1991} \equiv 10[13]: \text { إنن }
$$

و بالتالي :

$$
10^{n}-2^{n} \equiv 0[13] \text { تميين }
$$

$$
\left(10^{6 m}\right)^{2} \equiv(1)^{2}[13] \text { : } 10^{6 m} \equiv 1[13] \text { ومنوم بتعديم الدور }
$$

$$
10^{12 m+\alpha} \equiv 10^{\alpha}[13]: \text { : } 10^{12 m} \equiv 1[13]: \text { ع }
$$

$$
(n+3)(n+5) \equiv 0[7]: \text {, }
$$

 2) بو اقٌ قِّيمة

$$
2^{0} \equiv 1[7], 2^{1} \equiv 2[7], 2^{2} \equiv 4[7], 2^{3} \equiv 1[7]
$$

$$
2^{3 p+2} \equiv 4[7], 2^{3 p+1} \equiv 2[7], 2^{3 p} \equiv 1[7]: \text {, }
$$

 $n^{2}+n+1 \equiv 0[7]: 2^{s}=n: 2^{2 s}+2^{s}+1 \equiv 0[7]$

$$
n \equiv 2[7] \text { ومن اللسؤ ال الاول نجد : } n \equiv 4[7] \text { فو }
$$

$$
2^{s} \equiv 2[7] \text { و } 2^{s} \equiv 4[7]: \text { cis }
$$

التمرين 10 - -
كتابة الأعداد في النظام ذي الأساس 8 :

$$
\begin{array}{r}
100=12 \times 8+4 \\
12=1 \times 8+4 \\
1=0 \times 8+1
\end{array}
$$

و منه 100 يكتب 8 144 في اللنظام ذي الانساس 8 . $1830=228 \times 8+6$
$228=28 \times 8+4$

$$
28=3 \times 8+4
$$

$$
3=0 \times 8+3
$$

و منه 1830 نكتب 8446 في النظام ذي الأساس 8 ($1962=245 \times 8+2$
$245=30 \times 8+5$

$$
30=3 \times 8+6
$$

$$
3=0 \times 8+3
$$

و منه 1962 يكتب 3652 في النظام ذي الأساس 8

$$
\begin{array}{r}
2008=223 \times 9+1 \\
223=25 \times 9+3 \\
25=2 \times 9+7 \\
2=0 \times 9+2
\end{array}
$$

$$
\text { و منده } 2008 \text { بكتب } 9 \text { في نظلام التعداد الذي أساسه } 9 \text {. }
$$

$2 a \equiv 2 n-2[n]:$ لدينا : $2 a+1 \equiv n-1+n[n]$: $2 a+1 \equiv 2 n-1[n]$: $2 a+1 \equiv n-1[n]:$:

$$
415 \equiv 7[8]: \text { لدينا }
$$

$$
831 \equiv 7[8]: 831=2(415)+1 \text { و } 1 \text { و ننه }
$$

$$
\text { التمرين } 8 \text { : }
$$

$4^{0} \equiv 1[9] ; 4^{1} \equiv 4[9] ; 4^{2} \equiv 7[9] ; 4^{3} \equiv 1[9]$
$4^{3 k+2} \equiv 7[9], 4^{3 k+1} \equiv 4[9], 4^{3 k} \equiv \mathbb{1}[9]:$: $4^{3} \equiv 1[9]:$: نذه بما أن $4^{n} \equiv 4[9]: \quad n \equiv 1[3]$ 凉 $\quad, \quad 4^{n} \equiv 1[9]: n \equiv 0[3]$ م $4^{n} \equiv 7[9]: \quad n \equiv 2[3]$ Lै, $4^{n}-3 n-1 \equiv 0[9]:$: إثبات أن
$3 n \equiv 0[9]: n \equiv 0[3]:$: $4^{n}-3 n-1 \equiv 0[9]:$:

$$
3 n \equiv 3[9]: n \equiv 1[3]: \text { : }
$$

$$
4^{n}-3 n-1 \equiv 0[9]: \text { : }
$$

$$
3 n \equiv 6[9]: n \equiv 2[3]: \text { : من أجل - }
$$

$4^{n}-3 n-1 \equiv 0[9]:$: $4^{n}-3 n-1 \equiv 7-6-1[9]$ ع 4^{n}

التمرين 9: -
$n^{2}+n+1 \equiv 0[7]$: تحديا 1
$n^{2}+8 n+1 \equiv 0[7]$ و

$$
\begin{aligned}
& (n+4-1)(n+4+1) \equiv 0[7]: \text { أي : }
\end{aligned}
$$

|giv 1 1

المضاعف المشنّرك الأصنر : العدد الاؤلى :

نقول عن عدد طبيعي a إنه أولى إذا كان عدد فو اسمهd انثين مختلفين .

$$
\text { إنْ : } 2=2
$$

$$
\text { التمرين } 17 \text { : - }
$$ كل عدد طبيعي a غير أولمى و أكبر تماهـا من 1 يقبل ، على الآقّل ، قاسما أوليا b يحقّق :

$$
\begin{aligned}
& b^{2} \leq a \\
& : 2 \text { A } 2 \text { هبر }
\end{aligned}
$$

部 $=-3$ و منه ليس لها حلول . $x^{2}+x+1=0$

6	5	4	3	2	1	0	+
$\overline{6}$	$\overline{5}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$	$\overline{0}$	0
$\overline{10}$	$\overline{6}$	$\overline{5}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$	1
$\overline{11}$	$\overline{10}$	$\overline{6}$	$\overline{5}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	2
$\overline{12}$	$\overline{11}$	$\overline{10}$	$\overline{6}$	$\overline{5}$	$\overline{4}$	$\overline{3}$	3
$\overline{13}$	$\overline{12}$	$\overline{11}$	$\overline{10}$	$\overline{6}$	$\overline{5}$	$\overline{4}$	4
$\overline{\mathbf{1 4}}$	$\overline{\mathbf{1 3}}$	$\overline{\mathbf{1 2}}$	$\overline{11}$	$\overline{10}$	$\overline{6}$	$\overline{5}$	5
$\overline{\mathbf{1 5}}$	$\overline{14}$	$\overline{13}$	$\overline{12}$	$\overline{11}$	$\overline{10}$	$\overline{6}$	6

120 $122^{3} \times 3 \times 5$

 هيضاعفات عدد طبيعي :
مبر هنة 6 : 6 عدد طبيعي :
بكون العلد الطبيعي b مضاعف للعدد a إلذا كان كل عامل أولمي في تحليل b موجود في تحليل . a a a

المضاعف المشتر ك الأصغر كلاعدالد $a_{n}, \ldots, a_{2}, a_{1}$ هو جداء الـعو اهل الأولية الموجودة في تحليلدهـها بحيث يأخذ كل عامل مرة و احدة و بأكبر أس .
 شيث : $a_{1}, a_{2}, \ldots, a_{n}$
المضاعف المشترك الأصنر كلأعداد
تتييين اللمضاعف المشترك الانصغر :
ببرهنـة 7

$$
\begin{aligned}
& 2^{10}=0 \times 2^{0}+0 \times 2^{1}+0 \times 2^{2}+0 \times 2^{3}+0 \times 2^{4}+0 \times 2^{5}+0 \times 2^{6} \\
& \begin{aligned}
2^{10}=0 \times 2^{0} & +0 \times 2^{1}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
2^{10}=0 \times & 2^{0}+0 \times 2^{1}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& (x-2)\left(x^{2}+x+1\right)=0: \text { إن }
\end{aligned}
$$

() هل العدد 503 أولمي أم ل又 ؟ $x^{2}-y^{2}=503:$ حل في

الأكمرين 2 :
(1) حلّ العدد 60 إلى جداء عو امل أولية . . 60 (2) (3) عين قو اسم العدد 60
$B=35 \times 56 \times 78$ و $A=44 \times 88 \times 96: B$ ح B, A, A العيث حلّ

$$
\operatorname{PGCD}(A ; B): \text { : }
$$

$$
\text { PPCM }(A ; B) \text { : أحسب }
$$

و PGCD $(30000 ; 170000)$: لـون تحليل إلى جداء عوامل أولية الحسب
PPCM $(30000 ; 170000)$
الوجد أصنر 5

(1)........ $9 x-22 y=55$ 2 PGCD $(x ; y)=55$ عين الحلول (1) بحيث (1) : 7 الالتمرين
أربعة حدود متتابعة من متتالية هندسية أساسها d, c, b, a $10 a^{2}=d-b:$: عين هذه الحدود علما أن a a a و q و $q>1$

$$
P P C M(a ; b)=\mu, P G C D(a ; b)=\delta
$$

a a الأصغر . عين كل الأعداد $11 \delta+7 \mu=1989$: حيث a : a الان

PGCD $(2490 ; 32785 ; 2905)$: عين
 $x^{2}-y^{2}=503$: $x-y<x+y$ و $1(x-y)(x+y)=503$ بما أن 503 عدد أولي و لدينا

$$
x=252:\left\{\begin{array}{l}
x-y=1 \\
x+y=503
\end{array}\right.
$$

$$
\text { إذن }(252 ; 251) \text { حل للمعادلة . }
$$

$$
60=2^{2} \times 3 \times 5
$$

 3 3) تُعيين قو اسم 60 : 60
$2^{\alpha} \times 3^{\beta} \times 5^{\delta}$: كل قاسم للععد 60 يكون من الشَكـ
$0 \leq \delta \leq 1, ~ 0 \leq \beta \leq 1,0 \leq \alpha \leq 2$

Q	β ق	فقيم	
$\alpha=0$	$\beta=0$	$\delta=0$	1
		$\delta=1$	5
	$\beta=1$	$\delta=0$	3
		$\delta=1$	15
$\alpha=1$	$\beta=0$	$\delta=0$	2
		$\delta=1$	10
	$\beta=1$	$\delta=0$	6
		$\delta=1$	30
$\alpha=2$	$\beta=0$	$\delta=0$	4
		$\delta=1$	20
	$\beta=1$	$\delta=0$	12
		$\delta=1$	60

 : 3 التّرين (1)
$A=44 \times 88 \times 96=4 \times 11 \times 8 \times 11 \times 24 \times 4$ $A=2^{2} \times 11 \times 2^{3} \times 11 \times 2^{3} \times 3 \times 2^{2}$ $A=2^{10} \times 3 \times 11^{2}$ $B=35 \times 56 \times 78=5 \times 7 \times 8 \times 7 \times 39 \times 2$ $B=5 \times 7 \times 2^{3} \times 7 \times 3 \times 13 \times 2$

 32785 DA و و تُمن بذلةُ اللاعبة 2490DA و علـا ان الندادي دفع في المجموع ما هو عدد اللاعبين و عدد اللاعبات التمرين 11 :ـا

$$
\text { 11) حل في } 5 x-3 y=7 \ldots \text { المعادلة : }
$$

$$
\text { نفرض (x;y) دل للمعادلة (1) مـا هي القيم الممكنة لـ : PGCD }(x ; y) \text { (}
$$

نعتبر في

عين حلا خاصا

$$
\begin{equation*}
\text { PGCD }(x ; y) \text { : } \tag{2}
\end{equation*}
$$

$$
\text { عين الحلول } \operatorname{PGCD}(x ; y)=7 \text { : } 7 \text { :للمعادلة (1) بحيث }(x ; y)
$$

$$
\text { عين الحاول (x;y) للمعادلة (1) بحيث يكون : x } \text { و y أوليان فيما بينوها . }
$$

$$
\text { عين الحثول } x^{2}+y^{2}<2009 \text { : } x ; y \text { :لمعادلة (1) بحيث }
$$

$a=503$: البحث عن أولية

b القاسم الأولي	قابلبة	b^{2}	a
2	a a لا	4	$b^{2}<a$
3		9	$b^{2}<a$
5	$a b$	25	$b^{2}<a$
7		49	$b^{2}<a$
11	a a a لا ${ }^{\text {لا }}$ b	121	$b^{2}<a$
13	a a a	169	$b^{2}<a$
17		289	$b^{2}<a$
19		361	$b^{2}<a$
-4 23		529	$b^{2}<a$

$$
9 x-22 y=55: \text { : } 6
$$ (3)...9 $\left(x^{\prime}-1\right)=2(y-2): 9 x^{\prime}-2 y=9 \times 1-2 \times 2:$: 4,

 $x=11(2 k+1):$: $x^{\prime}=2 k+1$: : $x^{\prime}-1=2 k$

$$
\text { 2-تعيين حول (1) بحث : } 25 \text { - } 5 \text { (}
$$

$$
9 \times 55 x^{\prime}-22.55 y^{\prime}=55: \text { بالتعويض في (1) نجد }
$$

$$
\text { (4).......9 } 9 x^{\prime}-22 y^{\prime}=1 \text { : } 1 \text { : }
$$

هبث

$$
9 x^{\prime}-22 y^{\prime}=9 \times 5-22 \times 2: \text {, }
$$

$$
\text { (5).....9 } 9\left(x^{\prime}-5\right)=22\left(y^{\prime}-2\right): \text { : }
$$

$$
\text { و منه : : } x^{\prime}=22 \alpha+5=22 \alpha \text { و بالتّالي }
$$ (لذ $\alpha \in \mathbb{Z}$ م $x_{1}=1210 \alpha+275 y_{1}=495 \alpha+110 \quad$: $\left(x_{1} ; y_{1}\right)$

$$
10 a^{2}=d-b \quad d, c, b, a \text { تعيين }
$$

$$
\begin{array}{r}
B=2^{4} \times 3 \times 5 \times 7^{2} \times 13 \\
P P C M(A ; B):(2) \\
P P C M(A ; B)=2^{4} \times 3=48 \\
P G C D(A ; B):(3):(H)=13 \\
P G C D(A ; B)=2^{10} \times 3 \times 5 \times 7^{2} \times 11^{2} \times 13 \\
=1183902720
\end{array}
$$

$\operatorname{PGCD}(30000 ; 170000)=\operatorname{PGCD}\left(3.10^{4} ; 17.10^{4}\right)$

$$
\begin{aligned}
& =10^{4} P G C D(3 ; 17) \\
& =10^{4} \times 1=10^{4}
\end{aligned}
$$

$$
\operatorname{PPCM}(30000 ; 170000)=\operatorname{PPCM}\left(3.10^{4} ; 17.10^{4}\right)
$$

$$
=10^{4} P P C M(3 ; 17)
$$

$$
=10^{4} \times 3 \times 17
$$

$$
=510000
$$

ايجاد أصضر عدد طبيعى b b 104 قو اسم :
 قو قو اسمهـ 10. أي b إما له عامل و واحد أولثي أو عاملان .

$$
b=a_{1}^{\alpha 1} \times a_{2}^{\alpha 2} \text { و } b=a^{\alpha}: \text { و }
$$

$$
\text { إذا كان } b=a^{\alpha} \text { فبان } 1+\alpha=10 \text { أي } 1+\alpha=a^{\text {إ }}
$$

$$
\left\{\begin{array} { l }
{ \alpha _ { 1 } = 4 } \\
{ \alpha _ { 2 } = 1 }
\end{array} \text { gi } \left\{\begin{array} { l }
{ \alpha _ { 1 } = 1 } \\
{ \alpha _ { 2 } = 4 }
\end{array} \text { g } \left\{\begin{array}{l}
\alpha_{1}=0 \\
\alpha_{2}=9
\end{array}\right.\right.\right.
$$

$$
b=a_{1}^{4} \times a_{2} \text {, } b=a_{1} \times a_{2}^{4} \text { g } b=a_{2}^{9} \text {, و ولى }
$$

$$
\begin{aligned}
& b=2^{9} \text { g } b=2 \times 3^{4} \text { g } b=2^{4} \times 3 \\
& b=512 \text { و } b=162 \text { و } b=48 \text { وليه } \\
& \text { !بذن أصنر عدد هو } 48 \text { و عدد قو اسممه } 10 .
\end{aligned}
$$

$$
\begin{aligned}
& y-2=9 k \text { إن } 9 \times 2 k=2(y-2):(3) \text { (3) } \\
& y=9 k+2
\end{aligned}
$$

$b=3$, $a=45$ g $b=15$, $a=9$ و $b=45$, $a=3:$: عليه , $: b$ و a
$\delta . \mu=a b b: \quad$: أوليان فيما بينهما . و لاينا b^{\prime} و a^{\prime} ع $b=\delta b^{\prime}$ و $a=\delta a^{\prime}$
$11 \delta+7 \mu=1989$: $\mu=\delta a^{\prime} b^{\prime}$
(1) $\ldots \delta\left(11+7 a^{\prime} b^{\prime}\right)=1989: 11 \delta+7 \delta a^{\prime} b^{\prime}=1989$

:1 (1)

$$
\text { مرفوض } a^{\prime} b^{\prime}=\frac{142}{7} \text { و منه } 11+7 a^{\prime} b^{\prime}=153: \delta=13
$$

$$
\text { a } 11+7 a^{\prime} b^{\prime}=117: \delta=17
$$

$$
\text { . } 11+7 a^{\prime} b^{\prime}=51: \delta=39
$$

$$
\text { (7 } 11+7 a^{\prime} b^{\prime}=39: \delta=51 \text { و منه } 4 \text { و منه } a^{\prime} b^{\prime} \text { (}
$$

$$
b=204, a=51 \text { و } b=b^{\prime}=4 \text { و } a^{\prime}=1
$$

$$
\text { a } 11+7 a^{\prime} b^{\prime}=17: \delta=117 \text { مرفنه } a^{\prime} b^{\prime}=\frac{6}{7}
$$

$$
\text { . } 11+7 a^{\prime} b^{\prime}=13: \delta=153 \text { و هنه } a^{\prime} b^{\prime} b^{\prime}=\frac{2}{7} \text {. }
$$

$$
\text { . } 11+7 a^{\prime} b^{\prime}=9: \delta=221 \text { و منهd } a^{\prime} b^{\prime}=-\frac{2}{7}
$$

$$
\text { . } 11+7 a^{\prime} b^{\prime}=3: \delta=663 \text { مرفوض . }
$$

$$
\begin{aligned}
& \text { مرفوض } a^{\prime} b^{\prime}=\frac{1978}{7} 11+7 a^{\prime} b^{\prime}=1989: \delta=1 \text { () } \\
& \text {. } 11+7 a^{\prime} b^{\prime}=1989: \delta=3 \\
& a^{\prime} b^{\prime}=30 \text { و } 11+7 a^{\prime} b^{\prime}=221: \delta=9(3 \\
& b=270 \text { و } a=9: b^{\prime}=30 \text { و } a^{\prime}=1 \mathrm{~L} \\
& b=135 \text { g } a=18: b^{\prime}=15 \text { g } a^{\prime}=2 \text { L } \\
& b=90 \text {, } a=27: b^{\prime}=10 \text { و } a^{\prime}=3 \mathrm{w} \\
& b=54 \text { و } a=45: b^{\prime}=6 \text { و } a^{\prime}=5 \mathrm{\omega}
\end{aligned}
$$

$10 a^{2}=a q^{3}-a q \quad$ وعليه $d=a q^{3} \cdot c=a q^{2} \cdot b=a q$: لاينا $10 a=q\left(q^{2}-1\right) \quad: \quad$ إن

 - من أجل $5 a=3$: $10 a=2\left(2^{2}-1\right): q=2$ و مرفوض $2 a=24$: $10 a=5\left(5^{2}-1\right): q=5$ من أجل 10 م $d=1500 \cdot c=300 \cdot b=60: 3$: 15 : $a=12$ $a=99$ و $10 a=10\left(10^{2}-1\right): q=10$ من أجن $d=99000 \cdot c=9900 ، b=990$ بذ
1)ايجاد الأعداد التّي مربع كل منها يقسم 1980
$1980=2^{2} \times 3^{2} \times 5 \times 11$

- 1
$\delta . \mu=a \cdot b$: لاينا :

(1) $\ldots \delta^{2}\left(a^{\prime 2} b^{\prime 2}-5\right)=1980:\left(\delta a^{\prime} b^{\prime}\right)^{2}-5 \delta^{2}=1980$: 190 منـ
 $a^{\prime 2} b^{\prime 2}-5=1980$: 1 تكافیى 1

$$
a^{\prime 2} b^{\prime 2}-5=495: \text { : 2 من أجل } 2 \text { : تكافئ }
$$

$$
\text { إذن : } a^{\prime} a^{\prime} b^{\prime}=\sqrt{500} \text { ومنرفوض) } a^{\prime 2} b^{\prime 2}=50
$$

$$
a^{1^{2}} b^{\prime 2}-5=220: \text { : } 3 \text { : تكافَى أجل } 3 \text { (1): } \delta=3
$$

$$
a^{\prime} b^{\prime}=15: \text { بذن : } a^{\prime 2} b^{\prime 2}=225 \text { وعليه }
$$

وعليه :

$$
b=45, a=3: b^{\prime}=15, a^{\prime}=1
$$

$$
b=15, a=9: b^{\prime}=5, a^{\prime}=3
$$

$$
b=3, a=45: b^{\prime}=1, a^{\prime}=15
$$

$$
a^{\prime 2} b^{\prime 2}-5=330: \text { من أجل } 6=6 \text { : } 1 \text { : } 1 \text { : }
$$

$$
\text { إذن : } a^{\prime} b^{\prime}=\sqrt{335} \text { (مرفوض)). }
$$

$$
\text { (} x ; y \text {) هلو (1) هي الثنائيات المعقادلة }
$$ $k \in \mathbb{Z}$ ع $y=5 k+1$ g $x=3 k+2:$:

$$
\text { PGCD }(x ; y) \text { : : }
$$

$$
\text { السكنة لـ : : PGCD }(x ; y \text { هي } 7 \text { و }
$$

$$
\operatorname{PGCD}(x ; y)=7:
$$

$$
\text { . بحيث }\left\{\begin{array}{l}
x=7 x^{\prime} \\
y=7 y^{\prime}
\end{array}\right.
$$

$$
7\left(5 x^{\prime}-3 y^{\prime}\right)=7: 5.7 x^{\prime}-3.7 y^{\prime}=7: \text { و منه }
$$

$$
\text { ر ملده : } \left.5 x^{\prime}-3 y^{\prime}=1 \text { نلاحظ أن : } 12 ; 3\right) \text { حل خاص و منه : }
$$

(3) $\ldots 5\left(x^{\prime}-2\right)=3\left(y^{\prime}-3\right):$: $5 x^{\prime}-3 y^{\prime}=5(2)-3(3)$

$\alpha \in \mathbb{Z}$ ع $y=35 \alpha+21$ g $x=21 \alpha+14$
: $\alpha \equiv 0[7]$ تبيان أن
$44 x=7(5 y+1): 44 x=35 y+7: 44 x-35 y=7$
 $\left.\therefore x_{0} ; y_{0}\right)$ (2 $x_{0}=7 \alpha:$: $x_{0} \equiv 0[7]$ و $44 x_{0}-35 y_{0}=7$ و لدينا $y_{0}=\frac{1}{5}(44 \alpha-1): 44.7 \alpha-35 y_{0}=7:$: $44 \alpha-5 y_{0}=1:$, 1 , من أجل $y_{0}=-\frac{1}{5}: \alpha=0$ مرفوض .

$$
\begin{aligned}
& 5\left(x^{\prime}-2\right)=3.5 \alpha: y^{\prime}=5 \alpha+3: \\
& x^{\prime}=3 \alpha+2: \text { : } x^{\prime}-2=3 \alpha: \text { : } \\
& y=7(5 \alpha+3), x=7(3 \alpha+2)
\end{aligned}
$$

PGCD $(2490 ; 32785 ; 2905)$ حساب

$32785=5 \times 83 \times 79$

$$
2490=2 \times 3 \times 5 \times 83
$$

$$
2905=5 \times 7 \times 83
$$

PGCD $(2490 ; 32785 ; 2905)=5 \times 83=415:$ و 15

$$
\text { 2) حل في }{ }^{2} \text { المعاددلة : }
$$

$7 \times 1+6(12)=79$: $79=7+6 y=79$ $7 x+6 y=7(1)+6(12)$ إذن : 1)
و عليه :

6

$$
y=-7 k+12 \text { و عليه }
$$

$k \in \mathbb{Z}$ مجموعة الحنول هي كل الثنائيات من الثكلل : 2) إيجاد عدد الللاعبين و عدد اللاعبات :

نفرض x هو عدد اللاعبين و x عدد الللاعبات فيكون : $2905 x+2490 y=32785$

$$
y=-7 k+12, x=6 k+1 \text { نـ } \quad 7 x+6 y=79
$$

التمرين 11:
(1)......5x-3y=7
1)

 $x=3 k+2:$: $x-2=3 k:$ ن $5(x-2)=3.5 k$

$$
\begin{aligned}
& 5 x-3 y=5(2)-3(1) \text { : لاينا : } \\
& \text { (2).......5 } 5(x-2)=3(y-1): \text { : }
\end{aligned}
$$

إذن : $44\left(x^{\prime}-4\right)=35.44 \alpha$: $\left.y^{\prime}=44 \alpha+4\right)$ بالتّويض في $y^{\prime}=4$ نج $\alpha \in \mathbb{Z}, x^{\prime}=35 \alpha+4: x^{\prime}-4=35 \alpha$ و , ,

$$
\begin{aligned}
& y=7(44 \alpha+5), x=7(35 \alpha+4) \text {, } \\
& y=308 \alpha+35 \text {, } x=245 \alpha+28 \text { : } \\
& \text { 5) تعيين الحطول (}
\end{aligned}
$$

 مضاعف 7 و عليه حتى يكون PGCD $1 ; x ; y)=1$ يجب أن يكون y ليس مضاعفا للعدد 7.
$308 \alpha+35 \equiv 0[7]$] $]$

$$
\text { أي } \beta \in \mathbb{Z} \text {. حيث }
$$

$\alpha \neq 7 \beta$: أما إذا كان y أي $y=308 \alpha+35$ مع $\begin{aligned} & \text { ليس مضاعفا للعدد } 7 .\end{aligned}$

$$
\begin{aligned}
& (35 \alpha+28)^{2}+(44 \alpha+35)^{2}<2009
\end{aligned}
$$

$1225 \alpha^{2}+1960 \alpha+784+1936 \alpha^{2}+3080 \alpha+1225<2009$ $\alpha(3161 \alpha+5040)<0:$: $\quad 3161 \alpha^{2}+5040 \alpha+2009<2009$

$$
\begin{aligned}
& \alpha \in]-1,6 ; 0[\text { ي } \alpha \in]-\frac{5040}{3161} ; 0[\text { : }
\end{aligned}
$$

من أجل 1 . $y_{0}=\frac{43}{5}: \alpha=1$ مرفوض من أجل $y_{0}=\frac{87}{5}: \alpha=2$ مرفوض من أجل $y_{0}=\frac{131}{5}: \alpha=3$ رفوض $\left(x_{0} ; y_{0}\right)=(28 ; 35):$ من أجل
حل المعادلة (1) : لاينا : $44 x-35 y=44 \times 28-35 \times 25$)
(2)......44(x-28) $=35(y-35)$:

$$
\alpha \in \mathbb{Z} \text { إذن : } x=35 \alpha+28 \text { يث } x-28=35 \alpha
$$ بالتُعويض في 45 (2) نجـ : $44(35 \alpha)=35(y-35)$ و منه :

$$
9=44 \alpha+35: \text { : } y-35=44 \alpha
$$

$$
\text { 3 تاتعين القيم المككنة لـ : PGCD }(x ; y)
$$

$$
\text { 4) تعيين } \operatorname{PGCD}(x ; y)=7 \text { : بحيث }
$$

. معناه : $\operatorname{PGGCD}(x ; y)=7$
(3)...... $44 x^{\prime}-35 y^{\prime}=1$: 1 : 1 (1) نتوزيض في

نبحث عن حل خاص :
لاينا : (28;35) حل خاص للمعادلة (1) و منه: (4;5) خل خاص للمعادلة (3) 44 $x^{\prime}-35 y^{\prime}=44(4)-35(5):$:
(4).......44($\left.x^{\prime}-4\right)=35\left(y^{\prime}-5\right):$ لن

 | * إذا كان : المفروط الدوراتي : II :1

 (() و نصف ز زاوية رأسه θ حيث θ زاوية حادة .

$$
\text { 2- معادلة مخروط الاوران الأي رأسه O oو محوره (} o \text { (} o \text {) : }
$$

لنكّن $\vec{k}(0 ; 0 ; 1) \cdot \overrightarrow{O M}(x ; y ; z)$) (o; $\vec{k})$ لدينا من جهة : (1) و (1)

$$
\text { أ } \overrightarrow{O M} \cdot \vec{k}=\|\overrightarrow{\mathrm{OM}}\| \cdot\|\vec{k}\| \cdot \cos \theta
$$

$$
\overrightarrow{O M} \cdot k=\sqrt{x^{2}+y^{2}+z^{2}} \times 1 \times \cos \theta \ldots \text { (2) }
$$

$$
\left(x^{2}+y^{2}+z^{2}\right) \times \cos ^{2} \theta=z^{2}
$$

$$
x^{2}+y^{2}+z^{2}=z^{2}\left(1+\tan ^{2} \theta\right): x^{2}+y^{2}+z^{2}=\frac{z^{2}}{\cos ^{2} \theta}
$$

$$
x^{2}+y^{2}-z^{2} \tan ^{2} \theta=0
$$

$: 4$ i4 9 وبالتالي :

$$
x^{2}+z^{2}-y^{2} \tan ^{2} \theta=0
$$

18 - المقاطع المستوية للسطوح

I ا الأسطو انـة القائمة :
نسمي أسطو انتة قانمة مجموعة نقط الفضاء التّي تبعد بعا ثابثا α عن مستقيم ثابت (
م : بيمى نصف قط الأسطوانة . ((ه) : يسمى محور الأنطوانة
 2- معادلة أسطوانة محورها (الفضاء منسوب إلى مطلم متعاهد متجانس (. α (α (γ) كتون نقطة
 . α. α هي $x^{2}+y^{2}=\alpha^{2}$

$$
\begin{aligned}
& x^{2}+z^{2}=\alpha^{2} \quad \alpha \text { 3- معادلة النطوانة مدورها }
\end{aligned}
$$

5- مقاطع أسطو انية :

ذات المعالةلة (P) . $x^{2}+y^{2}=\alpha^{2}$. مستو يوازي المد المستويات الإداثشية
$(P) \cap(\gamma):\left\{\begin{array}{c}x^{2}+y^{2}=\alpha^{2} \\ z=k\end{array}:\right.$:
وعليه (
$(P) \cap(\gamma):\left\{\begin{array}{c}x^{2}=\alpha^{2}-k^{2} \\ y=k\end{array}\right.$: با بذ
.
. .

ي الفضاء المنصوب إلى معلم منتعامد متجانس نـتبّبر المجسم المكافئ (L) ذو المعادلة (الموازي لأحد المستويات الإحداثيةَ

$$
\text { لثبحث عن (} L(\cap) \text { (}
$$

$$
\begin{aligned}
& (L) \cap(P):\left\{\begin{array}{c}
z=x^{2}+y^{2} \\
z=k
\end{array} \text { فَا }(P): z=k:\right. \text { ! } \\
& \left\{\begin{array}{c}
x^{2}+y^{2}=k \\
z=k
\end{array}:\right. \text { وعلي } \\
& \text {. }(L) \cap(P)=\phi \text { فإن } k<0 \text { فان } k \\
& \text {. }(L) \cap(P)=\{0\} \text {) إذا كان * } k=0 \text { فان } k= \\
& \text { إذا كان } k>0 \text { فان } k \text { فأنر }
\end{aligned}
$$

$(L) \cap(P):\left\{\begin{array}{c}z=x^{2}+k^{2} \\ y=k\end{array} \quad\right.$ فी $(P): y=k$ نإن

$$
\begin{aligned}
& (L) \cap(P):\left\{\begin{array}{c}
z=k^{2}+y^{2} \\
x=k
\end{array} \quad \text { فإن }(P): x=k \text { إن } \rightarrow\right.
\end{aligned}
$$

(المعاددلة $(o ; \vec{i}, \vec{j}, \vec{k})$) المجسم زائدي .

في الفضاء المنسوب إلى معلم متعامد متجانس (o; $\vec{i}, \vec{j}, \vec{k})$ نعتبر المخروط الاور انـي) (الذي معادلته $a^{2}=\tan ^{2} \theta$ و المسنتوي $x^{2}+y^{2}-a^{2} z^{2}=0$ (R) لاحد المحاور الإحداثية

$$
\text { * إذا كان } k \neq 0 \text { فإن }(P) \bigcap(R) \text { هي دائرة . }
$$

$(P) \cap(R):\left\{\begin{array}{c}x^{2}+y^{2}-a^{2} z^{2}=0 \\ y=k\end{array}\right.$ با

$$
\left\{\begin{array}{c}
x^{2}-a^{2} z^{2}=-k \\
y=k
\end{array}\right.
$$

* إذا كان $k=0$ ه

$$
\left\{\begin{array}{c}
y^{2}-a^{2} z^{2}=-k^{2} \\
x=k
\end{array}\right.
$$

1- تعريف: : المجسم المكافئ : III

في الفضاء المنسوب إلى معلم متعامد و متجانس (o o المُ $\vec{i}, \vec{j}, \vec{k}$) المعادلة

 2
 التّمرين 4 :
الفضاء منسوب إلى مطلم متعامد متجانس (0) . $A(2 ;-1 ; 1)$ أكتب معادلة للسطح المخروطي الاني رأسه O ومحوره O (A (A ويشمل

الفضاء منسوب إلى معلم متعامد متجانس (o \quad) $\vec{i}, \vec{j}, \vec{k})$)

الفضاء منسوب إلى مطلم متعامد متجانس (o \quad) $\vec{i}, \vec{j}, \vec{k})$)

 و الشثعاعين

الفضاء دنسوب إلى معلم متعامد متجانس (o
 \therefore. 8 قط
الفضاء منسوب إلى معلم متعامد متجانس (o $; \vec{i}, \vec{j}, \vec{k})$. $x^{2}+y^{2}+z^{2}-6 x+5=0$: 0 : ليكن (S) سطح الكرة المعرفةّ بالعلاقاة
 2- أكتب معادلة سطح الانسطو انة التي تحيط بالكرة (S) ومحور ها $(o ; \vec{i})$ (3- انكب معادلة سطح المخروط المحيط بالكرة (S) ورأسة O ومحوره (o; $)$).

$$
\text { لنبحث عن (H) }(H)
$$

$$
\left\{\begin{array}{c}
x \cdot y=k \\
z=k
\end{array}\right.
$$

$$
(H) \cap(P):\left\{\begin{array}{c}
x \cdot y=k \\
y=k
\end{array} \quad\right. \text { بإ }
$$

$$
\text { وعليه }(H) \cap(P):\left\{\begin{array}{c}
z=k x \\
y=k
\end{array}\right.
$$

$$
(H) \cap(P):\left\{\begin{array}{c}
x \cdot y=z \\
x=k
\end{array} \quad \text { جا }(P): x=k\right. \text { إذا كان }
$$

$$
\text { وعليه }(H) \cap(P):\left\{\begin{array}{l}
z=k y \\
x=k
\end{array}\right.
$$

الا

\qquad
الفضاء منسوب إلى معلم متعامد متجانس (o
 2- أكتب تمثيلا وسيطيا للمستقيم 1 الكا 3- عين نقط تقاطع (3 : 3 : التّترين 3 :
الفضاء دنسوب إلى معلم متعامد متجانس (o; $\vec{i}, \vec{j}, \vec{k})$.

$$
t^{2}-6 t+9+t^{2}-8 t+16=25
$$

$$
2 t^{2}-14 t+25=25
$$

$t=7$ g $t=0$ إذن $2 t(t-7)=0$ إن $2 t^{2}-14 t=0$ ومن 25

$$
\left\{\begin{array}{l}
x=13 \\
y=-4 \\
z=-3
\end{array} \quad\right. \text { و }
$$

 . $C(13 ;-4 ;-3)$
(1
 $(\gamma): x^{2}+z^{2}=17 \quad$ و $\quad \alpha=\sqrt{17} \quad$ وليه

2- التمثيل الوسيطي للمستوي (P)

إذن P تقطع الالسطو انة التمرين 4 : معاددلة السطح المخروطي $x^{2}+z^{2}-y^{2} \tan ^{2} \theta=0$ بما أن A نقطة من المخروط

$$
5-\tan ^{2} \theta=0 \text { فان }
$$

الفضناء منسوب إلى معلم متعامد متجانس ($0 ; \vec{i}, \vec{j}, \vec{k})$. نتبّب النقطة $\frac{\pi}{6}$ أكتب معايدلة المخروط الذي رأسه A $A(0 ; 0 ; 2)$ $\overrightarrow{\quad ا \quad \vec{i}, \vec{k})} 10$ التمرين

Jo in

التمرين 1 :
$x^{2}+y^{2}=\alpha^{2}$: معادلة سطح الانسطو انـة

$$
\begin{aligned}
& y^{2}+z^{2}=25 \text { ي } 1 \\
& \text { 2- تعيين التمثيل الوسبيطي للمستقيم (AB) : }
\end{aligned}
$$

$\overrightarrow{A M}=t \cdot \overrightarrow{A B}$ تكون نقطة $M(\mathbf{x} ; \mathbf{y} ; \mathbf{z})$ من المستقيم $)$ إثا وفقط إذا كان $\left\{\begin{array}{l}x=2 t-1 \\ y=-t+3 \\ z=-t+4\end{array}\right.$ وعني

وههو التمثيل الوسيطي للمستقيم (AB)
3- تُييين نقط تقاطع (AB) مع سطح الانسطو انة :

$$
(-t+3)^{2}+(-t+4)^{2}=25 \text { نحل الجملة }\left\{\begin{array}{c}
x=2 t-1 \\
y=-t+3 \\
z=-t+4 \\
y^{2}+z^{2}=25
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array} { c }
{ x = t + 1 } \\
{ y = 1 } \\
{ z = t ^ { \prime } - 3 }
\end{array} \quad \left\{\begin{array}{l}
x-1=t(1)+t^{\prime}(0) \\
y-1=t(0)+t^{\prime}(0) \\
z+3=t(0)+t^{\prime}(1)
\end{array}\right.\right. \\
& \text { 3- تُيين نقط تقاطع (} \\
& \left\{\begin{array} { c }
{ x ^ { 2 } + z ^ { 2 } = 1 7 } \\
{ y = 1 }
\end{array} \text { فنجد } \quad \left\{\begin{array}{c}
x=t+1 \\
y=1 \\
z=t^{\prime}-3 \\
x^{2}+z^{2}=17
\end{array} \quad\right.\right. \text { لجمل }
\end{aligned}
$$

$x^{2}+z^{2}-y^{2} \tan ^{2} \theta=0$ معادلة المخروط هي $\omega p=1 \quad$ ' $\quad \omega=1 \quad \tan \theta=\frac{\omega p}{o p} \quad$ لدينا ,$^{2}=o \omega^{2}-p \omega^{2}=(2)^{2}-(1)^{2}$ ونما3 $o \omega^{2}=o p^{2}+p \omega^{2}$ ولينا $\tan \theta=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \quad$ ن \quad ! \quad, $o p=\sqrt{3} \quad p^{2}=3 \quad$ نإنيه

$$
x^{2}+z^{2}-\left(\frac{\sqrt{3}}{3}\right)^{2} y^{2}=0 \quad \text { عليه معادلة المخروط تصبح }
$$

$$
x^{2}+z^{2}-\frac{1}{3} y^{2}=0
$$

1- ت تعيين المركز ونصف القطر للثرة: (S) $x^{2}+y^{2}+z^{2}-6 x+5=0$ لدينا : $(x-3)^{2}+y^{2}+z^{2}=4:$ ومنه : $\quad(x-3)^{2}-9+y^{2}+z^{2}-4=0$ وليه \quad وكي
 2ـ تُيين معادلة سطح الأسطو انـة المحيطة بهذه الكرة :
محور الأسطو انة المحيطة بالكرة هو $)$ (o; $y^{2}+z^{2}=4:$ هو 2 فثككون معادلة الأسطو انة كما يا

> 3- معادلة المخروط :
$y^{2}+z^{2}-x^{2} \tan ^{2} \theta=0$ هحور المخروط هو
$O A^{2}=O P^{2}+A P^{2}: P$ القانم فئ $O A P$ ولدينا في المثلث 0 و $\tan ^{2} \theta=\frac{4}{5} \quad \tan \theta=\frac{2}{\sqrt{5}} \quad$ i

$$
x^{2}+z^{2}-5 y^{2}=0: \tan ^{2} \theta=5: \text { ومليه معادلة المخروط }
$$

$$
y^{2}+z^{2}-x^{2} \tan ^{2} \theta=0: \text { معادلة المخروط }
$$ $y^{2}+z^{2}-x^{2} \tan ^{2} \frac{\pi}{6}=0$ و وليه نصف زاوية الرأس هي $\theta=\frac{\pi}{6} \frac{\pi}{6}$ أين $\tan ^{2} \frac{\pi}{6}=\frac{1}{3}$ ومناه معاددلة المخروط هي $\quad y^{2}+z^{2}-\frac{1}{3} x^{2}=0$ التمرين 6

1- معادلة السطح المخروطي :

$$
x^{2}+y^{2}-\frac{1}{2} z^{2}=0 \quad \text { وبالتّالي } \quad x^{2}+y^{2}-z^{2} \tan ^{2} \frac{1}{4}=0 \quad \text { ! }
$$

$$
\text { 2- التمثيل الوسيطي للمستوي }(A ; \vec{i}, \vec{j})
$$

$\overrightarrow{A M}=t \vec{i}+t \vec{j} \vec{j}$ تكون نقطة $M(x ; y ; z)$ من ها المستوي إذا وفقط إذا كان $M(x)$

$$
\left\{\begin{array} { l }
{ x = t + 1 } \\
{ y = t - 2 } \\
{ z = 1 }
\end{array} \quad \left\{\begin{array}{l}
x-1=t \\
y+2=t \\
z-1=0
\end{array}\right.\right.
$$

$$
x^{2}+y^{2}-\frac{1}{2}(1)^{2}=0 \quad \text { ن } \quad\left\{\begin{array}{c}
x=t+1 \\
y=t-2 \\
z=1 \\
x^{2}+y^{2}-\frac{1}{2} z^{2}=0
\end{array}\right.
$$

$$
\left\{\begin{align*}
z & =1 \tag{إذن}\\
x^{2}+y^{2} & =\left(\frac{\sqrt{2}}{2}\right)^{2} \quad x^{2}+y^{2}=\frac{1}{2}
\end{align*}\right.
$$

ومنـه يتقاطع المخروطو الأسطو انة وفقّ الدانرمَ الممرفةّ أعلاه . أي الاائرة ذات المركز

$$
\frac{\sqrt{2}}{2} \text { ونصف القطر } \omega(0 ; 0 ; 1)
$$

$f(x)=\frac{x^{2}-14}{\left(x^{2}-9\right)^{2}} \quad$ نعتبّ الدالة f حيث

$$
\lim _{x \rightarrow 3} f(x)=-\infty \quad: \text { نعلم أن }
$$

الخِل
 ونكتب عبارة الـالدة كمايلي :

2) نتقر على الززر هـ إن قيم x محصورة بين 2.9 و 3.1 لان x بيتناهي $f(2.9)$ نحو 3 أما قيم و $f(3,1)$ أي بين 37.9-9 11.8-
3) نتقر على الزنر

ZoomFit ثم نـتار كما يظهر عثى الشاشثة
 البيان باستيتمال الز القة حتى نحصن على الثقطة ذات الثالصـلة 3.0021277 ونجد $f(3.0021277)=-30580.5$ و هذا يدل على أن المخمنة التالية صحيحة $\lim _{x \rightarrow 3} f(x)=-\infty$
 ($A ; \vec{i}, \vec{j}, \vec{k})$ لدينا $M\left(x^{\prime} ; y^{\prime} ; z^{\prime}\right)$ نفر المقا $\overrightarrow{O M}=\overrightarrow{O A}+\overrightarrow{A M}$

$$
\left\{\begin{array}{c}
x^{\prime}=x \\
y^{\prime}=y \\
z^{\prime}=z-2
\end{array} \quad\right. \text { فنجد }
$$

$$
x^{12}+y^{1^{2}}-z^{1^{2}} \tan ^{2} \frac{\pi}{6}=0 \text { هعادلة المخروط في المعلم }(A ; \vec{i}, \vec{j}, \vec{k})
$$

$$
x^{2}+y^{2}-\frac{1}{3}(z-2)^{2}=0 \quad \text { ي } \quad \text { يليه } \quad x^{2}+y^{2}-(z-2)^{2} \times \frac{1}{3}=0 \quad \text {, }
$$

 لتكن $M(x ; y ; z)$ نقطة من الفضاء . تكون M نقطة من (M) اذا وفقط إذا كان

$$
\left\{\begin{array} { l }
{ x = 0 } \\
{ y = t } \\
{ z = 2 }
\end{array} \quad \text { ن. } \quad \left\{\begin{array}{c}
x=0 \\
y=t \\
z-2=0
\end{array} \quad \text { وعلي } \overrightarrow{A M}=t \vec{j}\right.\right.
$$

وهو التمثيل الوسبيطي للمستقيم (د) (د) 2- معادلة الأسظو انـة :
2 نقوم بتثيير المعلم : لنكّن السطون $(A ; \vec{i}, \vec{j}, \vec{k})$ ونفرض أن $)$
$\left\{\begin{array}{l}x=0+x^{\prime} \\ y=0+y^{\prime} \\ z=2+z^{\prime}\end{array}\right.$

$$
x^{\prime 2}+z^{\prime 2}=(1)^{2}(A ; \vec{i}, \vec{j}, \vec{k}) \text { هعادلة الأسطو انتة في المعلم }
$$ وعليه و $x^{2}+(z-2)^{2}$ وهي معادلة الأسطو انة في المعلم $)$. $\left.\vec{i}, \vec{j}, \vec{k}\right)$.

4）نقوم بتحريكَ نقطة من البيان باستعمال الز فمن أجل ：$x=0.82978723$ نجد

$$
f(x)=-0.0352532
$$

ومن أجل x=0.84042553 نجد
 يحقّق：

$$
0.829 \prec x_{0} \prec 0.840
$$

4 التطبيق
نحتبر الدالة f المعرفة بالعبارة

$$
f(x)=x^{3}+3 x^{2}
$$

تحققق باستعمال آلة بيانية الثو افقى بين اتجاه تغير الدالة f f و وإشارة الدالة المشتقة＂

：الـل

눈
ونكتب عبارة الداللة f و في

3）ننقر على الزر التمثيل البياتي الأتي ：

$$
f(x)=0.01287754
$$ و وعبارة الـا اللة المشتقة

باستّعمال الكة بيانية هـاهو تِمينلـ حول ：
$\lim _{x \rightarrow+\infty} x^{2}+x+\cos x=+\infty$

ونكتب عبار ة اللد الة كمايلي ：

WIHDOW

勺디 $=100 \mathrm{E}$ min＝2 16 GEDG Mas $=1$ bobabag $Y \Delta C 1=101$
人2es＝1

3）نتقر على الزر

4）4 $f(10000)=100009999:$ ：

وبالتاللي المخمنة التّاليةّ صحيحة ：
$\lim _{x \rightarrow+\infty} x^{2}+x+\cos x=+\infty$
اللنطبيق 3
بين أن المعاددلة ：

[^1]

4）تشقر على الزر النقط التّالية ：

5）نتقر على الزز سهس ونحرك زر الإجاهات لنحصل على حدود المتتّالية

3（3 نتق على فـا كما يظهر على الشاشة

4）يككن تحريك نقطة هن البيان لنـلاحظ أنه كلما

$$
\text { كانت } f^{\prime}(x) \succ 0
$$

كانت الالثة f f متز ايدة تماما
فمثّلا من أجل
$x=-2.808511$ $f^{\prime}(x)=6.8121322$

$$
f^{\prime}(x) \succ 0 \text { وعليه } 0
$$

 ：الشُشة ：


```
plot1 floce plot3
W1日\mp@code{N+1+en(%)}
w}
\psi*
44=
\psi
\mp@subsup{w}{6}{\prime}=
\(\stackrel{\psi}{7}=\)
rate prots
\(\alpha+1+n^{n}(X)\)
－
```

$f(x)=x+1+e^{x}$

$$
\text { أنشئ المماس (}) \text { للمنحني (c) عثد النقطة ذات الفاصلة } 0
$$

الحل

1）نتقّ على الزنر ： ونكتب عبارة الدالة f المعرفة

كمايلي ：
النطبيق 6 ：
أنشيين التتمثيل البياني（c）للا الة f（c）حيث ：
．$f(x)=x+1+e^{x}$
أحسب العدد المشتّق للt الة f عند العد －

Seq ：ونحول عمل الآلة إلى المتتاليات

نقوم بإلخال المتتالية بـاستعمال
（2
$\int_{-1}^{0} f(x) d x$: الحسب التكامل الآتي

: الیل
 ونكتب عبارة الدالة
في

$$
y_{1}=x^{2}+e^{x+1}
$$

5) ن نقر على اللمسة

ثم ننقر عثى العدد 7 ثم نصادق باللمسة Enter

(c)

5
عطى الزر
3) ننقر ع

4) حساب العدد المشثتّ للا الة 0 0 ألعد ننقر على الز على الرقم 8 لنختّار n Deriv(

ونكتب عبارة الالالة والمتّغير والثقيمة 0 كما يظهر على الشاشة ثم نتقر على Enter فنجصل على اللعد 0 وهو العدد المشتّق للالالة f عند 0

$$
\text { . إذن } 2 \text {. } f^{\prime}(0)
$$

 Si. 15

Imag((5+2i)/ (1-3i)) : ندخل العبارة نتقز على Enter فنجد: 1,70

4 4 (4xix ونحرك الز القة الى CPX على الرقم 5 فتظهر على الششاشة العبارة : abs (
abs((5+2i)/ (1-3i)) : ندل اللعبارة نتقر على Enter فنجد: 1,70

$(5+2 i)(1-3 i)$

(5+2i.) (1-3i.) Re ct.
$-\quad-10+1.70 i$
5) (5نقر على اللمسة ونحرك الز القة الىى CPX على الرقم 4 فتظهر على الشاشثة العبارة : angle (
angle((5+2i)/(1-3i)). :ندلّ العبارة
نتقز على Enter فنجد: 1,63
6)كتابة Z على الشكل الجبري : نكتب على الشاشة عبارة Z Zمايلي : (5+2i)/ (1-3i)

نتقر على اللمسة
ونحرك اللزالقة الـى CPX

ثـ تم نتقر على الرقم 6 و ننقر على
فتّظر على الشاثشة العبارة :

$$
-0,1+1,7 i
$$

6) كتابة Z على الشكّل الالسبي :
 $(5+2 i) /(1-3 i)$
6)،قوم بتحريك نقطة من (C) بو اسطةّ زر

الإججاهات حتى نحصل على النقطة
ذات الفقاصلة

$$
\begin{aligned}
& \int_{-1}^{0} f(x) d x=2,09: \text { :فنجد } \\
& 8 \text { التطبيق } \\
& \text {. } z=\frac{5+2 i}{1-3 i} \\
& \text { باستعمال آلة بيانية : }
\end{aligned}
$$

1) عين مر افقّ العدد

2) عين عددة العدي
3) أكثب (العدد z على الشُكن الانسي.

25 - $19-1.70 i$

2) ت تُيين للجز \& الحقيقي : تثقر على اللمسة
 real(: فتظهر على الشاشة التعبارة

```
(5+2i.)/人1-3i)|FO
1ar, 70^^(6)
```

ننق على اللمسة CPA
Enter ثمُ نتقز على الرقم 7 و ننقّ على فتظهز على الشاشة العبارة :

$1,7 e^{1,63 i}$

ملاحظة 1 :
لكتابةا الحرف i i نقوم بيمـيايلي : منلاحظة على : 2 :لالمسة

ونحدد عدد الازرقام بعد الفاصلة باستعمـال الز القة

النطبيق9:
 يقوم لاعب بالققاء اللقطعة الثققدية 10 مرات متتالية ـويكون رابحا 100 ديناركلما ظهر
الوجه F .

F المتنير اللششو ائي الأي يعد عدد الحالات التي يظهز فيها X

. Px مثل بياتيا القانون non
الحل :

 ـ تظهر النافذة المو الية التي تعطي قيم $0 \leq K \leq 1$ (0 ن 1 نختار منها سمك الخط ثـم ننقر على OKفيظهر التمثيل البياني للقانون الثثنائي.
 فنحجز: C4 + A\$3= ثم نعدم على باقي الخانات من عمود C إلى غاية الحصول على القيمة 3 أو أقرب قيمة لها.
 نحجز في الخانة D5 القيمة التقريبية للعدد (D) $y=f(x+h$ ولاينا ($f(x+h)=f(x) \cdot(1+h)$

B حتى الوصول إلى آخر قيمة للمتغير من العمود D D الخانات من عمود التمثيل البياني: نختار العوودين A B B نضغط على المساعد البياني

 التي تخص تمثيل الـالة (الحل) على المجال الأول [-3;0] [تعطي التمثيل البياني على المجال الثاني [0;3] كما يلي: نضع مؤشر الكتابة على خانة قيم x ثم نحجز قيم العمود C بالضنط بالفأزة من القيمة الاولى في C4 إلى آخر قيمةّ من نفس العمود. نضع مؤشُ الكتابة على خاتة قيمر y ثم نحجز قيم العمود D بالضغط بالفأرة من القيمة الاولى في D4 إلى آخر قيمة من نفس العمود. نضنط بعدها على التالي Suivant > فيظهر المنحنيان مكملان لبعضهما بلونين مختلفين ،حيث يشكلان منحني الدالة (الحل) على المجال [3;3-] ،
\qquad ثم الإتهاء

أنشى تمثيلا تفريبيا لحل المعادلة التفناضلية $y(0)=19 y^{\prime}=y^{\prime}$ باستّعمال طريقة

$$
\text { الحل : لدينا: } f(x+h)-f(x) \approx f^{\prime}(x) \cdot h \text { ومنه } \Delta y \approx f^{\prime}(x) \cdot \Delta x \text {) }
$$

$$
h>0 \simeq f(x-h)-f(x) \approx-f^{\prime}(x) \cdot h
$$

$$
f(x-h) \approx f(x) \cdot(1-h)
$$

مجدول Excel لمقاربة التمثيل البياتي للدالة الحل . حجز الأعداد: نحجز الخطوة h في الخانة A3 مثلا.
على الجزء

 قيّل 0 بطر ح الخطوة في كل مرة حنى الحصول على العدد 3فنحجز : A\$3 - A4 = ثُم نعمم على باقي الخانات من عمود A إلى

غاية الحصول على القيمة 3- أو أقرب قيمـة لـها. $f(0)=1$ نحجز في الخانة B4 العدد 1 وهو قيمة اللالة من أجل 0 الأن نحجز في الخانة B5 القيمة الثتقريبية للعدد $y=f(x-h=1$ ولدينا
(1-A\$3) : $f(x-h)=f(x)$. $(1-h)$

[0;3] [

نحجز في الخانة C4 قيمة ابتدانية للمنتغير وهي 0

نستخدم بجـول Excel لمقاربة التمثيل البياني للدالة الدل .
حجز الأعداد:نـجز الخطوة h في الخانة $h 3$ مثلا.

$$
0 \prec X \leq 1 \text { من أجل }
$$

نحجز في الخانة $A 4$ قيمة إبتاائية للمتغير وهي 1
 قـبّل 1 بطرّ ح الخطوة في كل مرة حتى الحصول على قيمة قريبة من
0 فنحجز: A\$3 - A4 = ثم نعمم على باقي الخانات من عمود A الـى
غاية الحصول على قيمة قريبة من 0 م 0 م 0 م

> نحجز في الخانة B5 القيمة التقريبية للعدد (y ولدينا h

باقي الخانات من عمودB B A من أجل
نحجز في الخانة C4 قيمة ابتدائية للمتنغير وهي 1
 بير 1 باضضاهة الخطوة في كل مرة فنحجز: C4 + A\$3

الخانات من عمود C إلى غاية آخر قيمة للمتغير من اللعمود
$f(1)=0$ نحجز في الخانة D4 اللعدد 0 وهو قيمة الدالة من أجل 1 لالن
 ($f(x+h) \approx f(x)+f^{\prime}(x) . h$

التمثيل البياني:

، نو اصل التعملية \square ثم المنحنى من النوع Numaser devants ونختار
 التي تخص تمثيل الدالة (الحل) على المجال الأول [0.1[محجوزة باسم ETHER . ثم نضنط
على Ajouter لإضافة السلسلة الثثانية الثتي تعطي التمثيل الثياني على المجال

الثثاني [1;b] كما يا

(4]) Eichier Edition Effichage Insertion Format Quitlls Ronntes Fegition :

 Prôt

التطبيق 11:

$$
\text { طريقة Euler بمجدول Excel في المجال [[0;b[و الخطوة } 0 ; 0.005 \text { = }
$$

$$
\begin{aligned}
& \text { لدينا: } \left.\Delta y \approx f^{\prime}(x) \cdot \Delta x+h\right)-f(x) \approx f^{\prime}(x) \cdot h \text { ومنه } f(x) \text { ؤه } \\
& h>0 \text { م } f(x-h)-f(x) \approx-f^{\prime}(x) \cdot h \\
& f(x-h) \approx f(x)-f^{\prime}(x) . h \text { gो } f(x+h) \approx f(x)+f^{\prime}(x) \cdot h \\
& f(x-h) \approx f(x)-\frac{h}{x} \text { ويما أن } f^{\prime}(x)=\frac{1}{x} \text { فنحصل } f^{\prime} y^{\prime}=\frac{1}{x} \text { فألو } \\
& . f(x+h) \approx f(x)+\frac{h}{x} g
\end{aligned}
$$

نتحصل بالعبارة الأولى $f(x+h) \approx f(x)+\frac{h}{x}$ ثقيم الدالة (الحل) من أجل $x \geq 1$ وتعطي $0 \prec x \leq 1$ العبارة الثثانية $f(x-h) \approx f(x)-f^{\prime}(x) . h$ قيم الداللة (الحل) من أجل القيم

وذلك باعتبار $f(1)=0$ في الانطلاقة وجعل $h(x)$ صغير ا بالقّر الذي يضمن تقريبا جيدا.

الا

	ع-i	الرة
4	النه	1
34		2
58		3
116	الـــول الأصــلية	4
136		5
174	الــالة اللو غــــارتية	6
235		7
255	المتنّاليات والتز اجع	8
280	الحساب النكاملي	9
319	الإت	10

 اللقيمة الأولى في C4 الثى آخر قيمةّ من نفس العمود.
 القيمة الأولىى في D4 إلى آخر قيمة من نفس العمود.

358	الأعداد المركبة	11
394	الالتُابها المستوي المباشر	12
414	الجداء السلمي فيالفضاءوتطبيقاته	13
427	الدستغيمات و المستويات في الفضاء	14
441	قابلبة القسمة	15
449	المو افقات في \mathbb{Z} \% و النّحداد	16
463	الأعداد الأولية	17
476	المقاطع المستوية لللسطح	18
487	تكنولوجيا الإعلام والإتصال	19

[^0]: $A_{10}^{5}=30240$ عدد السحبات المحكنة: :

[^1]: Flot1 Flate Flots
 $4 \% 1$ anse plots
 $\therefore 2=$
 $y_{3}^{2}=$
 $\therefore 4=$
 $\because 4_{5}^{4}=$
 $y_{6}=$
 $y_{7}=$
 \qquad

