للطرق المتبعة للإجابة عن أسئلة الدوال 3 ثانوي

 بی 7 مركز التيتاظر: (α - لإثبات أنُ الثنقطة
 $. f(\alpha-x)+f(\alpha+x)=2 \beta, f(2 \alpha-x)+f(x)=2 \beta$ 8

 يكفي أنُ نثبت، من أجل كل x من

$$
\text { . } f(\alpha-x)=f(\alpha+x), f(2 \alpha-x)=f(x)
$$: :

(انغـم عند قَبِمة $f^{\prime \prime}(x)$
الثق
 دون اللجوه إلى المشَّقّ الثلثاني (x)

$$
\begin{aligned}
& \text { الثنقطة ذات القاصلة } \\
& \lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=+\infty \text { حالة أخزى: اذذا كانت }
\end{aligned}
$$

 يُطلب هنا أنٌ ندر بل وضعينة المنحنى
المماسى عند الثنقطة ذات الفاصلة
 نسشتشت أن الفقطة ذات الفاصلة (10) C/

 (11) f $0 \in D_{f}$ دالة

 (O, \vec{i}, \vec{j}) C_{f}

 إذا كان الم الهنحنى
 إذا كان إن C,

$C_{f} \perp$ د مقارب مـانل ($\lim _{x \rightarrow \pm}(f(x)-(a x+b))=0$: بجوار

$$
\lim _{x \rightarrow \infty} \varphi(x)=0 \Longleftarrow f(x)=a x+b+\varphi(x)
$$

 a بالطر بفة الْتالية: نحسب bex b
 4) الدالة الزلو حئةّة: f f f (ألة $f(-x)=f(x)$ زو جئة، نبر هن المن أجل كل C ملخظة هافةّ: إذا كانت f f زو

f f f
 $f(-x)+f(x)=0$,

6 f f f f

بعُْ إنشاء لدالة

نحصل طى (2)
2) على المجالات التّي تكون فيها 0 ((أي يكون فيها
 بالنسبة إلى محور الفواصل.

 نحصل عطى

ملاحظة: غلابَ ما يُطلب منا أوَلا أنَّ نثبت أنَّ h زوجيَّة.

نحصل عل 2)نكهل الجز ه المتّقي من التّر اتّيب لانَّ h زوجيَّة $h(x)=-f(x):$ الصنَيغة الرابعة: اسمتنتّ

الالجبابة:

الاججبة:

$$
. h(x)=-f(-x)
$$

الإجابة:

 الإجابة: نستّنج

8/الصنَيغة الثِلفة: استنّح
$. k \in \mathbb{R}^{\prime}: \quad h(x)=k \cdot f(x)$
 ملاحظة: هذد أبرز الحالات ، وغير ها ثُبيه بها أو يعود إليها.

 منها كما سنترى. 1/الصنَيغة الأولِي(العاليَّة) : اكتب معالدة المماس للمنحني ع عند الْنقطة ذات الفاصلة C_{f} الإجبة: نكتب الاستور : حيث نُؤوض x_{0} بقيمنّها المعطاة.
 النقطة ذات التّرثّبب
 C
 الإجابة: نحلَ المعالدلة يا
ملاحظة: عدد الحلول يدلّ على عدد المماسات.
 يو يوازي المستّقيم ذا المعالدلة $y=a x+b$. الإجابة: نحل المعاللة Cf 5 Cf 6 يشمل النقطة ذات الإحداثتُيْيُ (() . $\beta=f^{\prime}\left(x_{0}\right) .\left(\alpha-x_{0}\right)+f\left(x_{0}\right)$ الإجابة: نحلَ المعالدالة

 $\lim _{x \rightarrow x_{3}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=I_{2}, \lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=I_{1}$ حيث أنَ النقطة ذات الفاصلة
 $\lim _{0 \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=l_{2}, \lim _{A \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=l_{1}$
 $\left\{\begin{array}{l}y=f_{g}^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right) \\ x \leq x_{0}\end{array},\left\{\begin{array}{l}y=f_{d}^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right) \\ x \geq x_{0}\end{array}\right.\right.$

$$
\text { علما أن : } f_{d}^{\prime}\left(x_{0}\right)=I_{2} \quad \text {, } f_{g}^{\prime}\left(x_{0}\right)=I_{1}
$$

$(0) \ln \alpha=0) \quad \ln \ln a>0)(2 . \quad(a>0) \quad \ln \alpha=0 \quad(a>1)(1$.

ت1: الرس ، في كل حالة ، نهاية الدالة f عند f ع $f(x)=\frac{\ln (x-1)}{x+3} \cdot 2 f(x)=x+1-\ln (x-2) \cdot 1$
$f(x)=\frac{1+2 \ln x}{1-3 \ln x} \cdot 4 f(x)=x+1-\ln (x-2)^{2} \cdot 3$ ت 2 : احسب ، في كل حالة ، النهاية : $\lim _{x \rightarrow-\infty} \ln \left(\frac{x+1}{x-1}\right) \cdot 2 \quad \lim _{x \rightarrow 0}\left(-x^{2}+3 x+1\right) \ln x \cdot 1$ $\underset{x \rightarrow 1}{\lim \ln }\left(\frac{x+1}{x-1}\right) \cdot 4 \underset{x \rightarrow-1}{\lim \ln }\left(\frac{x+1}{x-1}\right) \cdot 3$ $\lim _{x \rightarrow 0} \frac{\ln (1+3 x)}{x} .6 \quad \lim _{x \rightarrow-1} \frac{2 x}{x+1}-\ln (x+1) .5$ $\lim _{x \rightarrow+\infty} \ln |-4 x+2|-\ln |2 x-1| .8 \quad \lim _{x \rightarrow-\infty} \frac{\ln \left(x^{2}\right)}{x}$. \القانونا الاشُتَقاق: إذا كانت u دالة موجبة تماما و قابلة للاشُتقاق (ln $[u(x)])^{\prime}=\frac{u^{\prime}(x)}{u(x)}:$ على مجال I ، فانُ
 $(\ln |u(x)|)^{\prime}=\frac{u^{\prime}(x)}{u(x)}:$ على مجل I ، فان تُطبقات
 . $f(x)=\ln \left(\frac{x+1}{x-2}\right) \rightarrow$.f $f(x)=(\ln x)^{2}+2 \ln x-3$ ت . $f(x)=\ln \left|\frac{x+1}{x-2}\right|$

$$
\begin{array}{rr}
\ln \left(\frac{a}{b}\right)=\ln a-\ln b(4 . & \ln (a b)=\ln a+\ln b(3 . \\
n \in \mathbb{Q}: \ln \left(a^{\mathrm{a}}\right)=n \ln a(6 . & \ln \left(\frac{1}{a}\right)=-\ln a(5 .
\end{array}
$$

3.تُطبقات:

ت1: اكتب على أبسط شُكل ممكن الأعداد التّالهة: $\ln \left(\frac{1}{e}\right)^{2}-\ln ^{2}\left(\frac{1}{e}\right)\left(\begin{array}{lll}4 & e^{-2 \ln 3}(3 & e^{1+\ln 2}(2\end{array} e^{\ln 5}+e^{-\ln 3}(1\right.$

ت2: حل، في 2 : $2 \ln x=\ln (x-4)+\ln (2 x)$ المعالدلة
 ت4: حل، في .د.داسة إشارةّ بعض النجارات:
في كلُ ما يلي ، ترّرمز
: $a . \alpha \neq 0$. 1 لار اسة إثشارة العبارة عن القيمة التّي تُعْدها ولتُكن

 للر اسة إثشارةّ العبارةّ $a(\ln x)^{2}+b \ln x+c$ على نضع

 لإشارة كثيرات الحدود من الارجة الثانية.
(ln ت2: حل، في تحويل بعض عبارات الدو ال:

 $A \neq C, B \neq D$ متع
．$(\overline{A C}, \overline{B D})= \pm \frac{\pi}{2}+2 k \pi$ ，ئا

|OA

 $(\overrightarrow{A B}, \overrightarrow{A C})= \pm \frac{\pi}{2}+2 k \pi \quad, \frac{A C}{A B}=1 \Rightarrow A C=A B:$ ： （حسب الئفسير الهئدسي للطوبلة والعددة）

$$
\arg \left(\frac{z_{c}-z_{d}}{z_{s}-z_{1}}\right)=\arg (i y) \text { y }
$$

أي！

$(\overrightarrow{A B}, \overrightarrow{A C})= \pm \frac{\pi}{3}+2 k \pi \quad, \quad \frac{A C}{A B}=1 \Rightarrow A C=A B:$ （حب التففير الهنّنسي للطوبلة ，العقدة） $\left|z_{B}-z_{A}\right|=\left|z_{C}-z_{A}\right|=\left|z_{C}-z_{B}\right|:$ ：

 $\left|z_{B}-z_{A}\right|=\left|z_{c}-z_{A}\right|:$ ：

$\therefore z_{A} \neq 0$ 宛 $\arg \left(z_{d}\right)=(\overline{O I}, \overline{O A}) .1$
$. A \neq B$ خي $: \arg \left(z_{s}-z_{d}\right)=(\overline{O I}, \overrightarrow{A B}), 2$
．$B \neq O, A \neq O$ ： $\arg \left(\frac{z_{B}}{z_{A}}\right)=(\overline{O A}, \overrightarrow{O B}) .3$
$A \neq C, A \neq B \xlongequal{*} \arg \left(\frac{z_{c}-z_{A}}{z_{B}-z_{A}}\right)=(\overrightarrow{A B}, \overrightarrow{A C}) \cdot 4$
．

 ，r ， $\left|z_{A}-z_{0}\right|=\left|z_{B}-z_{0}\right|=\left|z_{C}-z_{D}\right|=\left|z_{D}-z_{B}\right|=r$ ن
 المركز o و و نصف القطر rer

كِع．استقّامبِّة النقطط：
$A \neq B$ 華 $: \frac{z_{c}-z_{A}}{z_{B}-z_{A}}=k \quad ; k \in \mathbb{R}: 1$
 $A \neq O \xrightarrow{2}$ 2．$\frac{z_{B}}{z_{A}}=k \quad ; k \in \mathbb{R}:$ اذا كان
 هِا．توازي شعاعيّن أو مستق：مينّن：

نستُتح فُ ن

$$
\text { وهي تُنـي أن } \overline{B D} / / \overline{A C}
$$

> :
> 1. لاحثة المُعاع ع . 3.

$$
\begin{aligned}
& \text { - }\left|z_{B}-z_{A}\right|=A B:\left|z_{B}\right|=O B:\left|z_{A}\right|=O A .1
\end{aligned}
$$

$$
\begin{aligned}
& A \neq B \text { 为 }:\left|\frac{z_{C}-z_{A}}{z_{B}-z_{A}}\right|=\frac{A C}{A B} .3
\end{aligned}
$$

