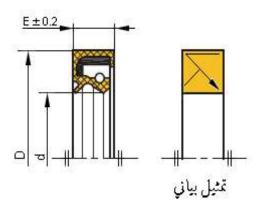

Ecrou à encoche + rondelle - frein



Couvercle

فاصل کتامهٔ ذو شفتین الله Joints à deux lèvres (type As)

Ajustements

التو افقات

التوافقات الأكثر استعمالا في نظام الجوف العادي

H-e H-f H-g H-h

H-p

تو افق

توافق بخلوص مشدود

خلوصىي

التوافقات الأكثر استعمالا في نظام العمود العادي

E-h F-h G-h H-h

P-h

تو افق

توافق بخلوص ترددي

توافق بخلوص مشدود خلوصىي

أمثلة على حساب التوافقات:

-3 \emptyset 30 H7 k5 -2 Ø 30 H7 g6 -1Ø 30 H7 v6

$$\emptyset 30 H7 = \emptyset 30^{+21}_{0}$$

$$\emptyset 30 H7 = \emptyset 30^{+2}$$

$$\emptyset 30 H7 = \emptyset 30^{+21}_{0}$$

$$\emptyset 30 k5 = \emptyset 30^{+11}_{+2}$$

$$\emptyset 30 p6 = \emptyset 30^{+35}_{+22}$$

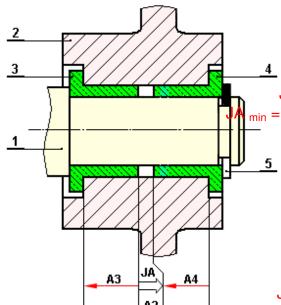
$$\emptyset 30 g6 = \emptyset 30^{-7}$$

1-
$$J_{max} = 21 - (-20) = 21 + 20 = 41 \ \mu m > 0$$

 $J_{min} = 0 - (-7) = 0 + 7 = 7 \ \mu m > 0$

2-
$$J_{max} = 21 - (+2) = 21 - 2 = 19 \ \mu m > 0$$

 $J_{min} = 0 - (+11) = 0 - 11 = -11 \ \mu m < 0$


3-
$$J_{max} = 21 - (+22) = 21 - 22 = -1 \ \mu m < 0$$

 $J_{min} = 0 - (+35) = 0 - 35 = -35 \ \mu m < 0$

- التوافقات حسب ما هو مبين في الرسم

13		<u>19</u>
y limited		
	Φ_1	23
	Φ_2	25
26	Φ3	
26 24	18	
		A

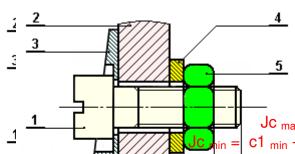
نوع التوافق	التوافق	الأقطار
مشدود	K6	Ø ₁
خلوصىي	H7	Ø ₂
خلوصىي	H7g6	Ø ₃

Chaine de cotes

كتابة المعادلات:

المعادلة الأساسية: - المعادلة الأساسية: - JA = A2 - (A4 + A3)

 $JA_{max} = A2_{max} - (A4 + A3)_{min}$: - المعادلات الحدية:


 $_{min} = A2_{min} - (A4 + A3)_{max}$

2 بينة المعادلات:

المعادلة الأساسية: B = B1 - B5

 $JB_{max} = B1_{max} - B5_{min}$ المعادلات الحدية:

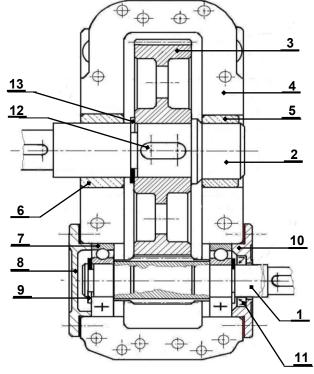
 $JB_{min} = B1_{min} - B5_{max}$

Les liaisons mécaniques

3 4

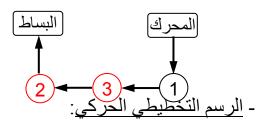
2/3

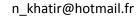
4/2

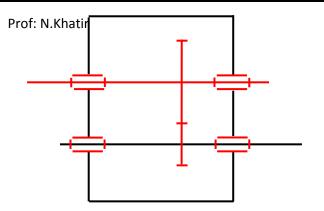

عبة المعادلات:

المعادلة الأساسية: (c5+c4+c2+c3) المعادلة الأساسية:

المعادلات الحدية: المعادلات الحدية: المعادلات الحدية: المعادلات الحدية: المعادلات الحدية: المعادلات الحدية

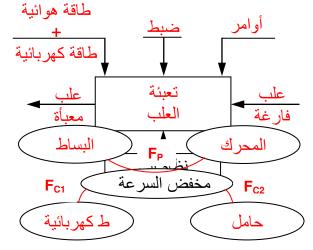

 $\frac{1}{\text{Lorentz}} = \frac{1}{\text{Lorentz}} = \frac{1}{\text{Lore$


الوصلات الميكانيكية



الوسيلة	ز	الرم	الوصلة	القطع
وسادة	\equiv	<u> </u>	متمحورة	4/2
2+13+12		I	اندماجية	3/2
مدحرجة BC	-		متمحورة	4/1

البيا التخطيطي للدورة الوظيفية:



الأسئلة الأكثر تداولا في الدراسة التكنولوجية:

1. المخطط الوظيفي (A-O):

مثال لنظام آلي:

2. المخطط للوسط المحيط للمخفض:

3. ما هو دور الوسادات ؟

دور الوسادات هو: التوجيه الدوراني.

1.3 ما هي مميزات الوسادة ؟

من ميزات الوسادة أنها تستعمل في حالة السرعات المتوسطة، والحمولات المعتدلة.

2.3 هل هي مناسبة في حالة سرعة كبيرة للعمود ؟

٧.

4. اقترح الحل المناسب.

مدحرجات ذات صف واحد من الكريات بتلامس نصف قطرى BC

1.4 ما هي وظيفة المدحرجات ؟

تحقيق وصلة متمحورة بين عمود وجوف بأقل احتكاك.

2.4 على أي أساس يتم اختيار طراز المدحرجات؟

يتم اختيار طراز المدحرجات حسب طبيعة الحمولات وسرعة الدوران.

3.4 ما هي مميزات المدحرجات BC ؟

هى مدحرجات تتحمل جهود محورية ونصف قطرية معتبرة.

4.4 يتم تغيير المدحرجات BC بالمدحرجات KB ، برر هذا الاختيار؟

لأن المدحرجات КВ تتحمل جهود محورية ونصف قطرية عالية، وتضمن ضبط خلوص الاشتغال.

5.4 كيف تركب المدحرجات KB ?

تركب المدحرجات KB أزواجا وبالتقابل.

6.4 ما هي أنواع التراكيب ؟

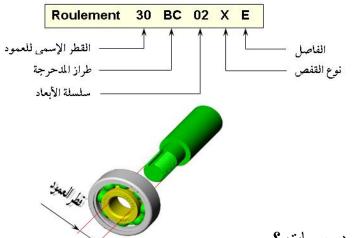
- تركيب مباشر شكل x ، يكون هذا التركيب في حالة عمود دوار (جهود داخل مجال المدحرجات).

- تركيب غير مباشر شكل ن ، يكون هذا التركيب في حالة جوف دوار.

ويكون أيضا التركيب غير المباشر شكل 🔾 في حالات خاصة عند دوران العمود، وهي كالتالي:

وجود جهود معتبرة نتيجة المتسننات (على الأطراف خارج مجال المدحرجات).

حالة عمود بوضعية شاقولية.


7.4 متى يركب الغمد ذو إبر؟

يركب الغمد ذو إبر في حالة مكان ضيق.

8.4 ما هي مميزات الغمد ذو إبر؟

من مميزاته أنه يتحمل جهود نصف قطرية عالية.

9.4 أعط تعيين المدحرجات؟

10.4 ما هي مواد صنع المدحر جات ؟

تصنع المدحرجات من مواد مقاومة للتآكل، مقاومة للصدأ، مقاومة للصدمات، وهي ذات صلادة كبيرة. نجد في ذلك: 18 Cr Ni Mo 6 - 100 Cr Mo 17 - 100 Cr 6.

5. ما هي أنواع المتسننات ؟

- _ متسننات أسطو انية ذات أسنان قائمة.
- ـ متسننات مخروطية ذات أسنان قائمة.
- 1.5 ما هي شروط التسنن بين الترس والعجلة ؟
- من أجل المتسننات الأسطوانية ذات أسنان قائمة:
- أن يكون للترس والعجلة نفس المقياس التناسبي ونفس الخطوة.
 - من أجل المتسننات المخروطية ذات أسنان قائمة:

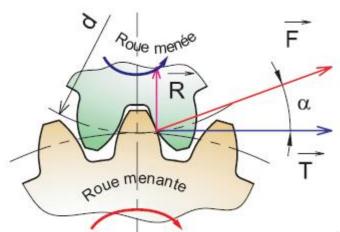
أن يكون للترس والعجلة نفس المقياس التناسبي و نفس الخطوة، ونفس مولدة المخارط الأساسية، ونفس قمة المخارط الأساسية.

2.5 ما هي طريقة تبريد المتسننات ؟

تبرد المتسننات عن طريق التخبط.

3.5 مميزات السن القائم عند المتسننات الأسطوانية:

العلاقات			سمية	الت	
الحسابية	مز	الر	المصطلح بالفرنسية	المصطلح بالعربية	
يحسب بمقاومة المواد	m	1	Module normalisé	المقياس (موحد)	
عدده حسب السرعة	Z		Nombre de dents	عدد الأسنان	
p = m.π	р		Pas circulaire	الخطوة	
d = m.Z	d		Diamètre primitif	القطر الأساسي	
da = d + 2.m	Eé	da	Diamètre de tête	القطر الخارجي	


da = d – 2.m	Ei			
df = d - 2,5.m	Eé	df	Diamètre de pied	القطر الداخلي
df = d + 2,5.m	Ei	ui	Diametre de pied	العظر الداخلي
ha = m	ha		Saillie de la dent	نتوء السن
hf = 1,25.m	hf		Creux de la dent	جذر السن
h = 2,25.m	h		Hauteur de la dent	ارتفاع السن
b = k.m	b		b Largeur de denture	عرض السن
6 ≤ k ≤ 10			Largeur de dentare	عر حل الس
a = (d1+d2) / 2	Eé		Catrova	التباعد المحوري
a = (d2- d1) / 2	Ei	а	Entraxe	اللباعد المحوري

 $T = F.\cos\alpha = 2C/d$ القوة المماسية:

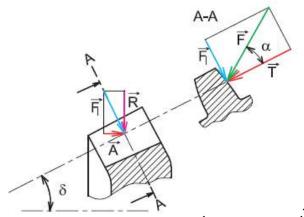
حيث: α زاوية الضغط، وهي تقدر ب: α $R = F. \sin \alpha$ عيث: α زاوية الضغط، وهي تقدر ب

- نسبة النقل:

$$r_{1/2} = \frac{N_2}{N_1} = \frac{\omega_2}{\omega_1} = \frac{d_1}{d_2} = \frac{z_1}{z_2}$$

4.5 مميزات السن القائم عند المتسننات المخروطية:

.1.		مست المحروطية.	ے ایس اسے کے اب	
		التسمية		
العلاقات الحسابية	الرمز	المصطلح بالفرنسية	المصطلح بالعربية	
يحسب بمقاومة المواد	m	Module normalisé	المقياس (موحد)	
عدده حسب السرعة	Z	Nombre de dents	عدد الأسنان	
tan δ1 = Z1 / Z2	δ	Angle primitif	الزاوية الأساسية	
d1 = m.Z1 d2 = m.Z2	d	Diamètre primitif	القطر الأساسي	
da1 = d1 + 2 m.cos δ1	da	Diamètre de tête	القطر الخارجي	
df1 = d1 – 2,5 m. cos δ1	df	Diamètre de pied	القطر الداخلي	
ha = m	ha	Saillie de la dent	نتوء السن	
hf = 1,25.m	hf	Creux de la dent	جذر السن	
h = 2,25.m	h	Hauteur de la dent	ارتفاع السن	


b = k.m	b	Largeur de denture	عرض السن	
6 ≤ k ≤ 10	D	Largeur de denture	عرص اسن	
tanθa = m / L	e a	Angle de saillie	زاوية النتوء	
tan 0 f = 1,25 m / L	O i	Angle de creux	زاوية الفجوة	
δ a1 = δ1 + O a	δa	Angle de tête	زاوية الرأس	
δ f1 = δ1 - Of	δf	Angle de pied	زاوية الجذر	
ملاحظة. °50 – 200 ملاحظة.				

T = 2C/d

 $A = T. tg\alpha . sin\delta$

 $A = T. tg\alpha . cos\delta$

حيث:

T : جهد مماسی

A: جهد محوري. R: جهد نصف قطري. 5.5 مثال على إتمام جدول مميزات خاص بمتسننات أسطوانية ذات أسنان قائمة:

а	df	da	d	Z	m	
96	28.25	35	32	21	1.5	1
96	156.25	163	160	106	1.5	3

 $a = \frac{d_1 + d_2}{2} \Rightarrow d_1 + d_3 = 2a = 192 \ mm$: وأن: $r_{1/3} = \frac{d_1}{d_2} = \frac{1}{5} \Rightarrow d_3 = 5d_1$ نعلم أن: $r_{1/3} = \frac{d_1}{d_2} = \frac{1}{5} \Rightarrow d_3 = 5d_1$

$$d_1 + 5d_1 = 192 \Rightarrow d_1 = \frac{192}{6} = 32 \, mm$$
 : في المعادلتين نستنتج أن

 $d_1 = 32 \ mm \Rightarrow d_3 = 5d_1 = 5.32 = 160 \ mm$

حساب عدد الأسنان:

$$d=m.z\Rightarrow z=rac{d}{m}$$
 نعلم أن:

$$z_1 = \frac{d_1}{m} = \frac{32}{1.5} = 21 \ dent$$
 $z_3 = \frac{d_3}{m} = \frac{160}{1.5} = 106 \ dent$

حساب الأقطار الخارجية:
$$d_a = d + 2m$$
 نعلم أن:

$$\mathbf{d_{a1}} = d_1 + 2m = 32 + 2 \ .1.5 = \mathbf{35} \ mm \qquad \mathbf{d_{a3}} = d_3 + 2m = 160 + 2 \ .1.5 = \mathbf{163} \ mm$$

حساب الأقطار الداخلية:
$$d_f = d - 2.5m$$
 نعلم أن:

$$d_{f1} = d_1 - 2.5m = 32 - 2.5.1.5 = 28.25 mm$$

$$d_{f3} = d_3 - 2.5m = 160 - 2.5 \cdot 1.5 = 156.25 \text{ mm}$$

$$N_m = 950 \, tr/mn$$
 : tr/mn : tr

$$r_{1/3} = \frac{N_S}{N_m} \Rightarrow N_S = r_{1/3}.N_m = \frac{1}{5}.950 = 190 \frac{tr}{mn}$$
 لدينا:

$$\eta=0.95$$
 و $P_m=1500\,w$: و $P_m=1500\,w$ و $P_m=1500\,w$ و $p=\frac{P_a}{R} \Rightarrow P_a=P_m$ و $P_a=1500\,0.095=1425\,w$ لدينا:

$$C_{\rm m} = \frac{30.P_m}{\pi.N_m} = \frac{30.1500}{\pi.950} = 15 \ N.m$$
 : $\frac{30.P_m}{\pi.950} = \frac{30.1500}{\pi.950} = \frac{15 \ N.m}{\pi.950}$

$$T = \frac{2.C_m}{d_m} = \frac{2.15}{32.10^{-3}} = 937.5 N$$

6.5 مثال على إتمام جدول مميزات خاص بمتسننات مخروطية ذات أسنان قائمة:

d	z	δ	m	المميزات
d=m.z	z_2 =tan δ_2 . z_{13}	$\delta_{13} = \delta - \delta_2$	/	العلاقات
50	25	21	2	2
130	65	69	_	13

❖ تفاصيل الحساب:حساب عدد الأسنان:

$$d_{13} = m. z_{13} \Rightarrow z_{13} = \frac{d_{13}}{m} = \frac{130}{2} = 65 \text{ dent}$$
 دينا: $z_2 = \tan \delta_2. z_{13} = \tan 21^{\circ}. 65 = 25 \text{ dent}$

- حساب الزاوية الأساسية للعجلة:
$$\delta = \delta_2 + \delta_{13} = 90^\circ \Rightarrow \delta_{13} = \delta - \delta_2 \Leftrightarrow \delta_{13} = 90^\circ - 21^\circ = 69^\circ$$
 نعلم أن: منافع المنافع ال

- حساب القطر الأساسي للترس:

$$d_2 = m. z_2 \Leftrightarrow d_2 = 2.25 = 50 \text{ mm}$$

$$r_{2/13} = \frac{d_2}{d_{13}} = \frac{50}{130} = 0.38$$

 $N_m=1500~tr/mn$: حساب سرعة دوران عمود الخروج علما أن

$$r_{2/13} = \frac{N_s}{N_m} \Rightarrow N_s = r_{2/13}.N_m = 0.38.1500 = 570 \, \text{tr/mn}$$

6. ما هي وظيفة البكر ات و السبور؟

نقل حركة دورانية مستمرة بين أعمدة متباعدة بالالتصاق أو بالحواجز بواسطة رباط مرن يسمى سير.

1.6 ما هي أنواع تراكيب البكرات والسيور ؟

يتم اختيار التركيب حسب وضعية الأعمدة واتجاه دورانها.

نجد: _ نقل بين أعمدة متعامدة.

- نقل بين أعمدة متوازية.

نقل بين أعمدة متوازية بنفس اتجاه الحركة.

نقل بین أعمدة متوازیة باتجاه معاکس.

2.6 ما هو طراز البكرات والسيور ؟

ـ بكرات وسيور شبه منحرفة.

بكرات وسيور مسطحة.

ـ بكرات وسيور مسننة.

3.6 ما هي إيجابيات السيور الشبه منحرفة بالنسبة إلى السيور المسطحة ؟

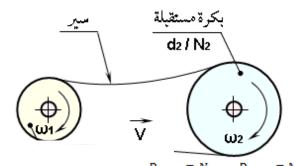
مقاومة الحرارة والتآكل.

4.6 ماذا يحدث عند انزلاق السير على البكرة ؟

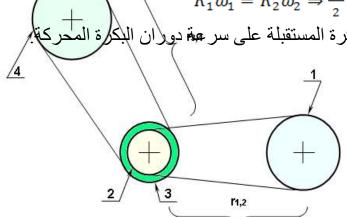
نقص في مردود النظام (ضياع السرعة والاستطاعة).

تآكل السير وفقدان مميزاته.

الاشتغال يصبح غير صامت.


5.6 ما هي مادة صنع البكرات؟

مادة صنع البكرات هي: أمزجة الألمنيوم، حديد الزهر، حديد الصلب، متكونات.


6.6 ما هي مادة صنع السيور ؟

مادة صنع السيور هي: المطاط.

7.6 <u>الحسابات:</u> - نسبة النقل:

 $R_1\omega_1=R_2\omega_2\Rightarrow rac{D_1}{2} imes rac{\pi.N_1}{30}=rac{D_2}{2} imes rac{\pi.N_2}{30}\Rightarrow rac{D_1}{D_2}=rac{\omega_2}{\omega_1}=rac{N_2}{N_1}=r_{1,2}$ نسبة النقل، و هي نسبة سرعة دور ان البكرة المستقبلة على سرعة دور ان البكر : $r_{1,2}$

11

نسبة نقل في حالة أكثر من بكرتين: $r = r_{1,2} \times r_{3,4}$

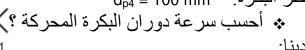
Prof: N.Khatir n_khatir@hotmail.fr

ملاحظة:

نقل بدون تغيير في السرعة r=1

نقل مضاعف للسرعة. r>1

 $P = C.\omega$: الاستطاعة:


السيور 5 و 6 الشبه منحرفة الشكل.

- معطیات:

سرعة البكرة المستقبلة: N4 = 1800 tr/mn

قطر البكرة: d_{p3} = 300 mm

قطر البكرة: d_{p4} = 100 mm

$$r_{1/2} = \frac{N_2}{N_1} = \frac{d_1}{d_2} = \frac{200}{100} = 2$$

$$r_{3/4} = \frac{N_4}{N_3} = \frac{d_3}{d_4} = \frac{300}{100} = 3$$

$$r_{3/4} = \frac{N_4}{N_3} = 3 \Rightarrow N_3 = \frac{N_4}{r_{3/4}} = \frac{1800}{3} = 600 \text{ tr/mn}$$

$$r_{1/2} = \frac{N_2}{N_1} = 2 \Rightarrow N_1 = \frac{N_2}{2} = \frac{N_3}{2} = \frac{600}{2} = 300 \, \frac{tr}{mn}$$

7. ما هي أنظمة تحويل الحركة ؟

T = R.P: نظام برغی صامولة بمشوار:

حيث:

R: عدد دورات البرغي.

P: خطوة اللولب.

C = 2r : نظام ساعد مدورة بمشوار

r: نصف قطر العجلة المدورة.

ـ نظام ترس شبیکة بمشوار: $C = P.Z = \pi.m.Z = \pi.d$ حبث:

P: الخطوة.

12

نقل مخفض للسرعة. r < 1

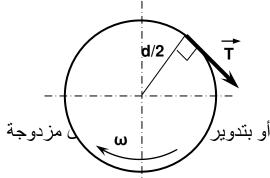
$$d_{p1} = 200 \text{ mm}$$

$$d_{p2} = 100 \text{ mm}$$

$$d_{p3} = 300 \text{ mm}$$

m: المقياس التناسبي.

z: عدد الأسنان.


d: القطر الأساسي.

8. حساب عناصر الاستطاعة الميكانيكية:

1.8 مزدوجة النقل:

لتدوير جسم نطبق عليه عزم (مزدوجة) بفعل قوة مماسية T.

 $C = T \times d/2$:تكتب عبارة مزدوجة النقل كالتالي

c: مزدوجة النقل (N.m)

T: القوة المماسية (N)

d: فطر العمود بالمتر (m)

يمل: نقل جسم على مسافة خطية (١) بفعل قوة $ec{f}$ أو بتدوير $ec{f}$ النقل(C) حيث: W: العمل بالجول (U)

F: قوة التحريك بالنيوتن (N)

1: المسافة الخطية بالمتر (m)

 $W = F \times l(I)$: العمل في الحركة المستقيمة:

 $W = C \times \theta$ (*J*) :العمل في الحركة الدائرية

 $P = \frac{W}{1}$ عمل مبذول في مدة زمنية معينة عمل مبذول في عدة عمل مبذول في عمد عبينة معينة عمل مبذول في عمد الاستطاعة.

 $P = F \times V$ (w) :الاستطاعة في الحركة المستقيمة

 $P = C \times \omega$ (w) :الاستطاعة في الحركة الدائرية

4.8 مردود النقل: هو نسبة الاستطاعة المستهلكة (Pa) (المستقبلة) على الاستطاعة المتوفرة (Pm) $\eta = \frac{P_a}{P_m}$

جدول خاص بكل عناصر الاستطاعة الميكانيكية

الوحدة	التسمية	الرمز
N.m	مز دوجة النقل بالنيوتن متر	С
w	الاستطاعة بالواط.	Р
J	العمل بالجول.	W
s	الزمن بالثانية.	t
N	القوة بالنيوتن.	F
m/s	السرعة الخطية بالمتر على الثانية.	V
rd/s	السرعة الزاوية بالرديان على الثانية.	ω
m	المسافة الخطية بالمتر	l

Θ المسافة الزاوية بالراديان. ط

5.8 مثال تطبيقي:

لتحضير حلويات منزلية ، يستعمل مخلط المطبخ ، يوفر محرك المخلط استطاعة قدر ها 0.5 Kw ، بسرعة دوران منتظمة تقدر بـ 750 tr/mn ، أحسب:

- المزدوجة المحركة لخلط العجين.
 - العمل المبذول عند 1000 tr.
- استنتج المدة الزمنية اللازمة لذالك.
 - المزدوجة المحركة لخلط العجين:

$$P = C. \omega \Rightarrow C = \frac{P}{\omega} = \frac{30.P}{\pi.N} = \frac{30.500}{\pi.750} = 6.36 \, N.m$$

- العمل المبذول عند 1000 tr:

 $W = C.\theta = C.2\pi n = 6.36.2\pi.1000 = 40000$

- المدة الزمنية:

$$P = \frac{W}{t} \Rightarrow t = \frac{W}{P} = \frac{40000}{500} = 80 \text{ s}$$

9. التعيينات:

- اشرح تعيين المواد التالية: E 295 EN GJL 350 E 295

E 295 عولب للإنشاءات الميكانيكية.

295: مقاومة حد المرونة عند المد 295

GJL: EN GJL 350: زهر غرافيتي رقائقي، 350: المقاومة الدنيا لحد الانكسار EN ، N/mm²: مواصفة أوروبية.

C40 : صلب غير ممزوج قابل للمعالجة الحرارية ب % 0,40 كربون

CuSn9P : برونز، حيث: Cu: نحاس معدن قاعدي ،Sn : قصدير ب: « P ، 9 : فسفور بنسبة أقل من « 1 Rondelle Ecrou H M16 VIS Cs M16 50 - اشرح تعيين الموحد للعناصر التالية:

M16

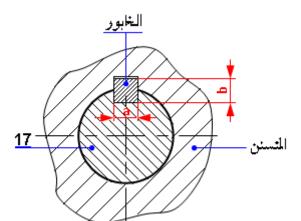
Cs: برغي اسطواني مشقوق.

M16: لولبة مترية بقطر اسمي يساوي 16

50: طول الساق.

H: صامولة سداسية.

M16: لولبة مترية بقطر اسمي يساوي 16.


M16: حلقة متوسطة بقطر اسمي يساوي 16.

10. مقاومة المواد:

1.10 <u>القص</u>:

تنقل الاستطاعة بين المتسنن المخروطي والعمود 17 بواسطة خابور متوازي بمقدار $P_m = 1.5 \; Kw$ و سرعة دوران $N_m = 1500 tr/mn$.

إذا كان قطر العمود d₁₇= 30mm و قياسات الخابور هي: (6x6x20) ، أحسب مايلي:

- 1- ما نوع التأثير الذي يتعرض له الخابور؟ نوع التأثير الذي يتعرض له الخابور هو: القص.

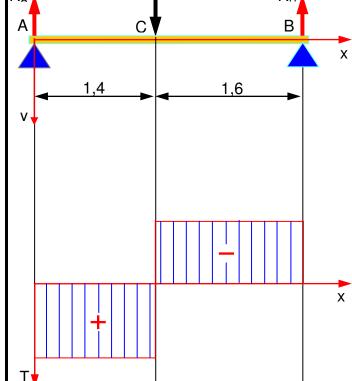
$$C = \frac{30.P}{\pi.N} = T.\frac{d}{2} \Rightarrow T = \frac{60.P}{\pi d.N}$$
 لدينا العلاقة التالية: $T = \frac{60.1500}{\pi 0.03 \, 1500} = 636,94 \, N$

3- إذا كان الخابور مصنوع من مادة الصلب 285 S : - تحقق من شرط المقاومة للخابور، علما أن م

 $\tau \leq R_{pg} \Leftrightarrow \frac{1}{c} \leq R_{pg} \Leftrightarrow \frac{T}{aL} \leq R_{pg}$ لدينا شرط المقاومة يكتب بالعلاقة التالية:

$$\frac{T}{a.L} = \frac{636,94}{6.20} = 5,30 \text{ N/mm}^2$$
 :T

$$R_{pg} = \frac{R_{eg}}{k}$$
 : R_{pg} : R_{pg}


$$R_{eg} = 0.8.285 = 228 \text{N/mm}^2$$
 : R_{eg}

$$R_{pg} = \frac{288}{2} = 96 \text{ N/mm}^2$$
 : each state of the state of the

حسب النتائج نجد أن: شرط المقاومة محقق.

4- ماذا تستنتج ؟

الخابور يؤدى وظيفته بكل آمان.

2.10 الانحناء:

تستند عارضة موشورية الشكل على ركيزتين A و B $\|\overrightarrow{F_1}\| = 400\,N$ وتتحمل في \mathbb{C} حمولة قدر ها

- احسب ردود الأفعال في A و B.
- احسب الجهود القاطعة و ارسم منحناها البياني .
- احسب عزوم الانحناء و ارسم منحناها البياني .

حساب ردود الأفعال في A و B.

بالإسقاط نجد: بالإسقاط نجد: $F - R_A - R_B = 0 \Rightarrow F = R_A + R_B$ $\sum M_{/A} = 0 \Leftrightarrow F. \ 1,4 - 3R_B = 0$ $R_{\rm B} = 186,66 \, N$

$$R_B=186,66~N \Rightarrow R_A=F-R_B \Rightarrow R_A=213.34~N$$

- دراسة تغيرات الجهود القاطعة و عزوم الانحناء:

Prof: N.Khatir n_khatir@hotmail.fr

$$0 \le x \le 1.4 \qquad .1$$

بالإسقاط نجد:

$$T - R_A = 0 \Rightarrow T = R_A = 213,34 \, N$$

$$\sum M_{/G} = 0 \Leftrightarrow -M + R_A.x = 0 \Rightarrow M = R_A.x$$

$$M = R_A.x = 213.34.x$$

$$M = 0$$
 : نجد أن $x=0$

$$M = 298,68 \, N.m$$
: نجد أن $x=1,4$

$$1.4 \le x \le 3$$
 .2

بالإسقاط نجد:

$$T + F - R_A = 0 \Rightarrow T = R_A - F = -186.66 N$$

$$\sum M_{/G} = 0 \Leftrightarrow -M + R_A \cdot x - F \cdot (x - 1.4) = 0$$

$$M = 1.4 F + (R_A - F).x$$

$$M = 560 - 186,66.x$$

$$M = 298.68 \, N.m$$
 نجد أن: $x=1,4$

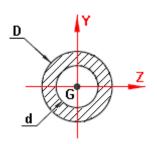
$$M = 0$$
 نجد أن: $x=3$

3.10 <u>الالتواء:</u>

 $P_s = 2.4$ وباستطاعة $N_t = 150$ tr/min تنقل الحركة الدورانية الدورانية إلى عمود البساط الناقل بسرعة دورانية $N_t = 150$ tr/min لاW

 $\pi = 3$ نأخذ Rpg = 40N/mm² العمود من مادة الصلب ذو مقاومة تطبيقية للانزلاق المطلوب:

- أحسب عزم الالتواء الذي يخضع له العمود ؟
- أحسب القطر الأدنى الذي يتحمل هذا التأثير ؟


- حساب القطر الأدنى للعمود حتى يتحمل هذا التأثير: لدينا شرط المقاومة يكتب كالتالى:

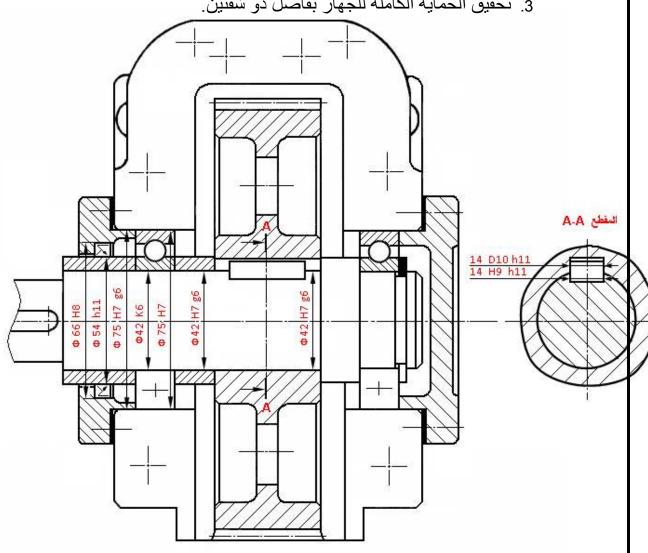
$$\tau_{max} \leq R_{pg} \Leftrightarrow \frac{\mathit{M_{t \; max}}}{\left(\frac{I_0}{r}\right)} \leq R_{pg} \Rightarrow \frac{\mathit{M_{t \; max}}}{\mathit{0.2.d^3}} \leq R_{pg} \Rightarrow d \geq \sqrt[3]{\frac{\mathit{M_{t \; max}}}{\mathit{0.2.R_{pg}}}}$$

$$d \ge \sqrt[3]{\frac{M_{t max}}{0.2.R_{pg}}} \Leftrightarrow d \ge \sqrt[3]{\frac{160}{0.2.40}} \Leftrightarrow d \ge \frac{27.73 \, mm}{27.73} = \frac{160}{160}$$

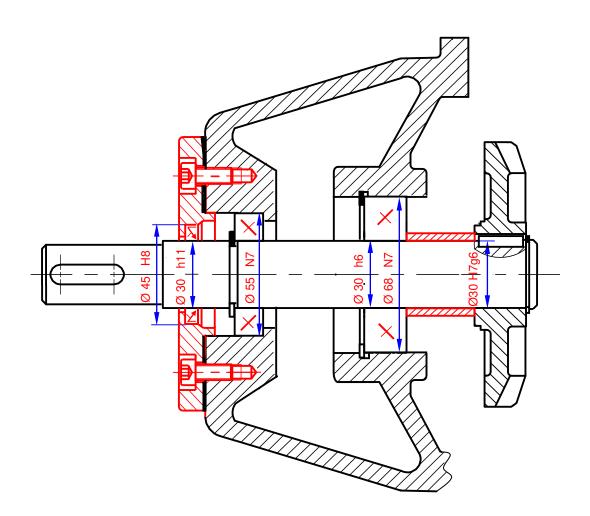
4.10 جدول خاص بالعزوم التربيعية لبعض الأشكال:

$I_0 = I_{GZ} + I_{GY}$	I _{GY}	I _{GZ}	المقطع (S)
$\frac{hb}{12}(b^2+h^2)$	$\frac{hb^3}{12}$	$\frac{b h^3}{12}$	Y Z
$\frac{a^4}{6}$	$\frac{a^4}{12}$	$\frac{a^4}{12}$	
$\frac{\pi d^4}{32}$	$\frac{\pi d^4}{64}$	$\frac{\pi d^4}{64}$	G Z
$\frac{\pi}{32}(D^4-d^4)$	$\frac{\pi}{64}(D^4-d^4)$	$\frac{\pi}{64}(D^4-d^4)$	d Y

Prof: N.Khatir


11. التحليل البنيوى:

1.11 در اسة تصميمية للمجموعة الجزئية:


- تركيب مدحرجات BC في حالة عمود دوار.

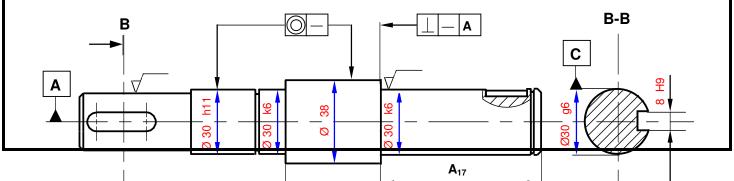
نظر اللاحتكاك على مستوى الوسادات و لتحسين مردود الجهاز نقترح التغييرات التالية:

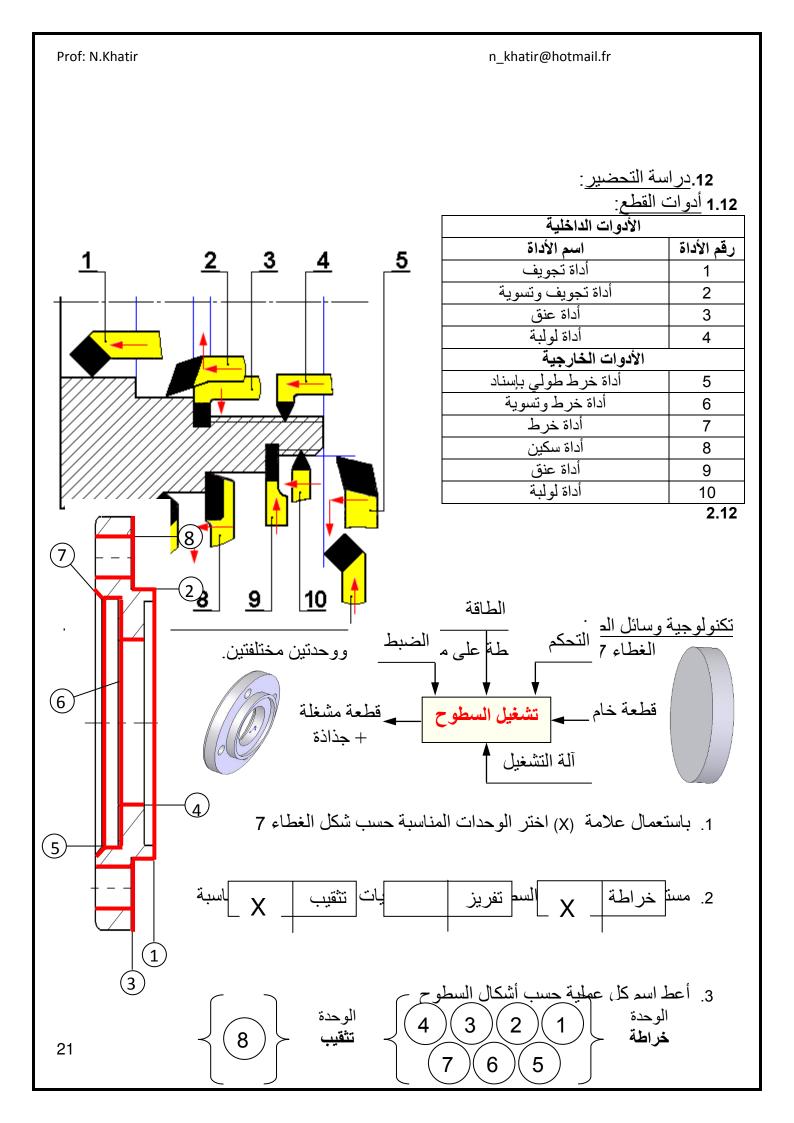
- 1. تحقيق وصلة متمحورة بين (2) و (4) باستعمال مدحرجات ذات صف واحد من الكريات بتماس نصف قطري ، مع إنجاز سماحات التركيب.
 - 2. تحقيق وصلة اندماجية بين (2) و (3) قابلة للفك.
 - 3. تحقيق الحماية الكاملة للجهاز بفاصل ذو شفتين.

- تركيب غير مباشر شكل حرف O بمدحرجات KB في حالة عمود دوار.
- لتحسين السير الحسن و تحقيق خلوص وظيفي أدني للمتسننات المخروطية (2 و 13) نطلب:
- انجاز وصلة متمحورة بين العمود 17 و الهيكل 8 بمدحرجات ذات دحاريج مخروطية (تمثل المدحرجات برسم تخطيطي فقط)
 - فاصل الكتامة ذو شفتين باحتكاك نصف قطري AS على الغطاء عند خروج العمود.
- انجاز الوصلة الاندماجية للعمود 17 و المتسننة المخروطية باستعمال خابور متوازي شكل: ٨
 - انجاز الوصلة الاندماجية بين الغطاء والهيكل باستعمال برغى CHc


2.11 در اسة تصميمية تعريفية:

- أتمم الرسم التعريفي للعجلة (3) بإنجاز مايلي:
 - 1. نصف المسقط الأيسر.
 - 2. تحديد الأبعاد الوظيفية.


n_khatir@hotmail.fr


Prof: N.Khatir

3. السماحات الهندسية والخشونة بدون قيم.

- أكمل الرسم التعريفي الجزئي للعمود 17 موضحا ما يلي: 1. المقطع المطلوب. 2. تحديد الأبعاد الوظيفية. 3. السماحات الهندسية والخشونة بدون قيم.

Prof: N.Khatir

<u>شكل</u>

 4. أعط اسم وشكل الأداة لانجاز السطوح: و السطح:

السطح:

اسم الأداة: أداة تسوية شكل الأداة:

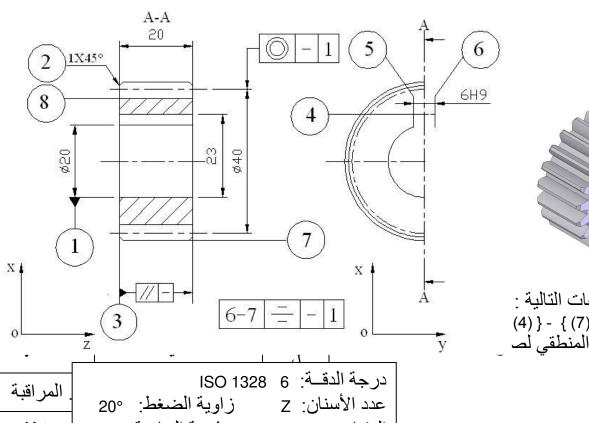
الأداة:

اسم الأداة: أداة خرط طولي

 $\emptyset 75g6 = \emptyset 75^{-10}_{-29}$

5. أعط اسم الجهاز المناسب لمراقبة السطح

لمراقبة السطح نستعمل: معيار أو جهاز الميكرومتر.


لمراقبة السطح 3.12 <u>تكنولوجية طرق الصنع:</u>

فرضيات خاصة بالصنع:

القطعة: الترس من مادة حصلنا عليه انطلاقا من السحب لعمود خام.

السلسلة: نقترح دراسة صنع الترس (3) في إطار عمل بسلسلة متوسطة

الورشة: مجهزة بآلات نصف آلية و آلية.

500

نقترح التجميعات التالية : { (1)،(2)،(3)،(7) } - { (4) استنتج السير المنطقي لص

ِ المراقبة خراطة	ISO 1328 زاوية الضغط: °20 خشونة الجانبية :	نان: z	درجة الد عدد الأسالمقياس:
تخلیق	$\sqrt{}$		
نحت	(8)	400	~

مراقبة نهائية

4.12 عقد المرحلة:

نهتم بالمرحلة 200 والعملية الخاصة بإنجاز السطح لصنع الترس (9) حسب الفرضيات التالية:

القطعة: حصلنا عليها عن طريق القولبة - الصنع:

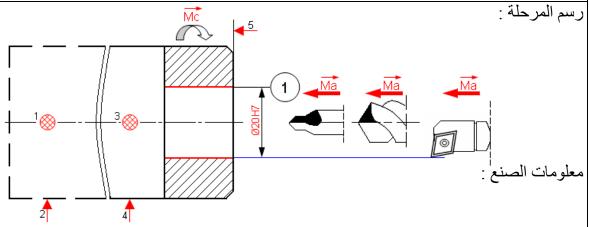
22

م. المراقبة

50 قطعة بالشهر لمدة ثلاث سنوات.

الورشة: مجهزة بآلات ، أدوات وعتاد للعمل بأي سلسلة.

المطلوب: أتمم رسم المرحلة بما يلي:


الوضعية السكونية - أبعاد الصنع - وضعية أدوات القطع/ القطعة - تمثيل Mc · Ma .

العمليات - عناصر القطع- أدوات القطع وسائل المراقبة.

-	
المجد عقد المرحلة	المجموعة : محرك – مخفض
عقد الفرحلة	القطعة: ترس
رقم المرحلة: 200	المادة : 25CrMo4
لمنصب: خراطة البرن	البرنامج :

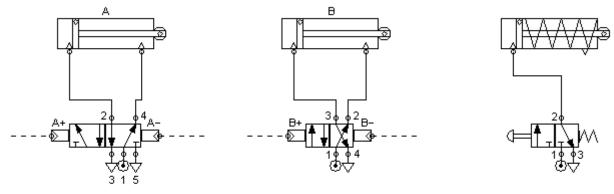
الآلـــة: TSA

حامل القطعة: التركيب

الأدوات		عناصر القطع				عمليات التصنيع	_	
المراقبة	الصنع	а	V _f	f	n	Vc	التعييـــن	لرقع
		ع	سرت	ت	ن	سر ق		
	أداة مركزة	_	_	0.2	2000		ثقب مركزة	201
	أداة تثقيب	-	-	-	-	26	تثقیب لـ (1) في استقراب	202
	أداة تجويف	-	-	-	-		تجويف لـ (1) في 2/1 انهاء	
معيار داخلي	أداة تجويف	-	82.8	0.2	414		تجويف لـ (1) في انهاء CF= Ø 20 H7	

13. الآليات:

1.13 ما هو الفرق بين موزع 2/5 أحادي الاستقرار و موزع 2/5 ثنائي الاستقرار؟ الموزع الأحادي الاستقرار التحكم فيه يكون من جهة واحدة فقط، رجوع المكبس يكون بواسطة النابض.


الموزع ثنائي الاستقرار التحكم يكون فيه من الجهتين بالتناوب.

2.13 ما هو دور الملتقطات ؟

Prof: N.Khatir

24

هي أجهزة توضع في القسم العملي لنظام آلي لاكتساب المعلومات حول وضعية عمل، ثم ترسل الإشارة المكتسبة إلى قسم التحكم.

موزع 2/5 ثنائي الاستقرار

موزع 2/4 ثنائي الاستقرار

موزع 2/3 أحادي الاستقرار

3.13 غرافسات مستوى 2 لنظام آلي:

عند الصغط على زر انطلاق بداية الدورة (dcy) تنطلق الدورة حسب ما يلي :

- دوران المحرك (MT1) ليتم تحرك البساط (T1)

يتم الكشف عن وصول العلبة لمنصب الختم بواسطة الملتقط (S) الذي يؤدي إلى:

- خروج ساق الدافعة + C2 (فعل + C2) حتى التأثير على الملتقط + C2 - خروج ساق

- دخول ساق الدافعة C2 (فعل C 2) حتى التأثير على الملتقط L20

- خروج ساق الدافعة C1 حتى التأثير على الملتقط L11

- دخول ساق الدافعة C1 حتى التأثير على الملتقط L10

- خروج ساق الدافعة C3 حتى التأثير على الملتقط L31 دخول ساق الدافعة C3 حتى التأثير على الملتقط L30

- دوران المحرك MT2 ليتم تحرك البساط T2 لنقل العلب (يتوقف البساط عند التأثير على الملتقط (S)

Mt1 +

الموقع الأول لتحضير الفروض والاختبارات في الجزائر https://www.dzexams.com

https://www.dzexams.com/ar/0ap	القسم التحضيري
https://www.dzexams.com/ar/1ap	السنة الأولى ابتدائي
https://www.dzexams.com/ar/2ap	السنة الثانية ابتدائي
https://www.dzexams.com/ar/3ap	السنة الثالثة ابتدائي
https://www.dzexams.com/ar/4ap	السنة الرابعة ابتدائي
https://www.dzexams.com/ar/5ap	السنة الخامسة ابتدائي
https://www.dzexams.com/ar/bep	شهادة التعليم الابتدائي
https://www.dzexams.com/ar/1am	السنة الأولى متوسط
https://www.dzexams.com/ar/2am	السنة الثانية متوسط
https://www.dzexams.com/ar/3am	السنة الثالثة متوسط
https://www.dzexams.com/ar/4am	السنة الرابعة متوسط
https://www.dzexams.com/ar/bem	شهادة التعليم المتوسط
https://www.dzexams.com/ar/1as	السنة الأولى ثانوي
https://www.dzexams.com/ar/2as	السنة الثانية ثانوي
https://www.dzexams.com/ar/3as	السنة الثالثة ثانوي
https://www.dzexams.com/ar/bac	شهادة البكالوريا